MATH 223A : Multivariable Calculus

Course Description/Syllabus

Spring Term 2025

 

 

Course Title:              Multivariable Calculus

 

Catalog Description:  The calculus of functions of more than one variable. Introductory vector analysis,  analytic geometry of three dimensions, partial differentiation, multiple integration, line integrals, elementary vector field theory, and applications.

 

Additional  Description:        All the functions you've studied in calculus so far live on a flat piece of paper. But you live in (at least!) three dimensions. Now you certainly know that calculus was invented to solve problems about the physical world, so we're going to have to move off that flat paper at some point. MATH 223 is where it happens. The key is the concept of a vector. If you've had a little bit of physics, you may have heard a vector is an object having direction and magnitude. You’ve also dealt with vectors in your study of linear algebra. In MATH 223, we'll tighten that definition up, and study functions whose domains and ranges consist of vectors. Can  limit, derivative and integral make sense out here? The answer is yes, and when you're through you'll know how Newton's calculus – the greatest intellectual achievement of humankind!  – made sense of Kepler's empirical observations about the motion of the planets – the greatest scientific discovery of all time! Come to think of it, maybe this course should be required for graduation…

 

Course Website:         s25.middlebury.edu/MATH0223A

 

Instructor:                  Michael Olinick, Office: 202 Warner, Phone: 443-5559. Home telephone: 388-4290; email: molinick@middlebury.edu. My usual office hours will be Monday, Wednesday and Friday from 10:40 AM to 1 PM. I would be happy to make an appointment to see you at other  mutually convenient times.

 

Meeting Times:          MATH 223A:  MWF  8:40  AM –   9:30 AM (Warner 010)

 

Prerequisites: Calculus II (MATH 122)  and  Linear Algebra (MATH 200) or permission.

 

Textbook:                   Michael Olinick, Multivariable Calculus: A Linear Algebra Based Approach, Revised First  Edition:  Kendall-Hunt, 2023; ISBN 9781792437915 (https://he.kendallhunt.com/product/multivariable-calculus-linear-algebra-based-approach)

 Your daily assignments will include a few pages of reading in the text. Be certain to read the book carefully (with pencil and paper close by!) and to complete the relevant reading before coming to class and before  embarking on the homework problems.

Supplemental Book:    Jeffery Cooper, A MATLAB Companion for Multivariable Mathematics (Academic Press, 2001). We will distribute portions in class.

 

Computer Algebra Systems:  Mathematically oriented software such as MATLAB, Maple, and Mathematica  give you an opportunity to investigate the ideas of  multivariable calculus in ways not available to previous generations of students. Relatively simple commands can direct a computer to carry out complex calculations rapidly and without error. More importantly, you can create and carry out experiments to develop and test  your own conjectures. The very powerful graphics capabilities of these applications  provide you with strong tools to deepen your understanding of multivariable calculus through visualization of curves and surfaces. MATLAB is an especially powerful computational and visualization tool which is used extensively in scientific research and engineering applications. Intermediate and advanced required and elective courses in. Middlebury’s Applied Mathematics Track adopt MATLAB  as the de facto programming tool. There will be a required introductory  MATLAB  workshop late in the first week of the term; you will be able to choose either a Thursday evening or Friday afternoon session. 

 

Requirements:                        There will be three midterm examinations and a final examination in addition to required daily homework assignments and an extended independent project.  The midterm examinations will be given in the evening to eliminate time pressure. Tentative dates for these tests are:

                                                Monday, March 3

                                                Monday, March 31

                                                Monday, April 28

 

Final Exam:               The registrar’s office has set the dates and times of our final exams:

Thursday, May15, 7 PM – 10 PM

 

Course Grades:          Each of the midterm exams will be worth approximately 20%, the final about 30%,  projects and homework roughly 10%. I will make adjustments with later work counting more heavily if students show improvement over earlier results.

            The mathematics department regards a C grade  as an indication of satisfactory understanding of the course material, a B as good/very good understanding and an A as an excellent/superior grasp of the material. Typically, but not always, these tend to correlate with averages in the 70’s, 80’s and 90’s, respectively.  I do strive to issue course grades keeping in mind the hundreds of students I have had in calculus classes over the years.

 

Accommodations Students who have Letters of Accommodation in this class are encouraged to contact me as early in the semester as possible to ensure that such accommodations are implemented in a timely fashion.  For those without Letters of Accommodation, assistance is available to eligible students through the Disability Resource Center (DRC).   Please contact ADA Coordinators Jodi Litchfield and Peter Ploegman of the DRC at ada@middlebury.edu for more information.  All discussions will remain confidential.

 

Homework:                Mathematics is not a spectator sport! You must be a participant. The only effective way to learn mathematics is to do mathematics. In your case, this includes  working out many multivariable  calculus problems.

                        There will be  daily written homework assignments which you will be expected to complete and submit. They will be corrected and assigned a numerical score, but I view these assignments primarily as learning rather than testing experiences. I will occasionally assign some challenging problems which everyone may not be able to solve. You should, however, make an honest attempt at every problem.

                        Each homework assignment will probably take you between 2 and 3 hours to complete; this includes the reading and problem solving.  If you keep pace with the course by spending an hour or so each day on it, then you will be quite successful. If you wait until the end of the week and then try to spend one six hour block of time on the material, then experience shows you face disaster!

                        Our homework grader this term is  Krysta Pereira, ‘27 ( kpereira@middlebury.edu ).

                                   

Help:                           Please see me immediately if you have any difficulties with this course. There are ample resources on campus for assistance, including the Center for Teaching, Learning and Research in the Davis Family Library and the new Q-Center ( “Armstrong Quantitative Center”) in BiHall.  The College will be assigning tutors to work with students in our course; they will schedule drop-in help sessions several nights a week. Stay tuned for more details.

 

            One of the essential characteristics of college life that distinguishes it from   secondary school is the increased responsibility placed on you for your own education. Most of what you will learn will not be told to you by a teacher inside a classroom.

 

Even if our model of you were an empty vessel waiting passively to be filled with information and wisdom, there would not be time enough in our daily meetings to present and explain it all.

 

We see you, more appropriately, as an active learner ready to confront aggressively the often times subtle and difficult ideas our courses contain. You will need to listen and to read carefully, to master concepts by wrestling with numerous examples and problems, and to ask thoughtful questions.

 

As you progress through the undergraduate mathematics curriculum, emphasis changes from mastering techniques to solve problems to learning the theory that underlies the particular subject you are studying. Multivariable Calculus is a transitional course. You will do plenty of calculations, find many derivatives and deal with a full quota of integrals. You will also find more of your effort directed toward understanding definitions, statements of theorems and their proofs. You will even be expected to come up with some short proofs of your own.

 

One of my goals for you this term is to develop your skills in reading mathematical expositions. I will expect that you will have read (perhaps more than once!) in advance the sections of the text relevant to the topic we will be exploring in class that day. I will not normally present a lecture which substitutes for reading the text. I will more likely use time in class to give a broader overview or  alternative proofs or  interesting applications and extensions of the material or previews of the next section.

 

Policy on Generative AI: Please see our Policy on AI Usage Any use of generative AI tools will be treated as a violation of Middlebury’s Honor Code.

MATH 223: Spring, 2025

 Tentative Course Outline

(Times are approximate)

 

 

I.          Review (on your own as needed)

            Single Variable Calculus

Vectors

            Equations and Matrices

            Vector Spaces and Linearity

 

II.        Derivatives (2 weeks)

            Functions of One Variable

            Several Independent Variables

            Partial Derivatives

            Parametrized Surfaces

           

 

III.       Differentiability  (1 week)

            Limits and Continuity

            Real-Valued Functions

            Directional Derivatives

            Vector-Valued Functions

           

IV.       Vector Differential Calculus  (2+ weeks)  

            Gradient Fields

            The Chain Rule

            Implicit Differentiation

            Extreme Values

            Curvilinear Coordinates

 

V.         Multiple Integration (3 weeks)

            Iterated Integrals

            Multiple Integrals

            Integration Theorems

            Change of Variable

            Improper Integrals

           

VI.       Integrals and Derivatives on Curves (1 week)

            Line Integrals

            Weighted Curves and Surfaces of Revolution

            Normal Vectors and Curvature

            Flow Lines, Divergence, and Curl

 

VII.      Vector Field Theory  (2+ weeks)

            Green’s Theorem

            Conservative Vector Fields

            Surface Integrals

            Gauss’s Theorem

            Stokes’s Theorem