MATH 223 Spring 2025 Assignment 16

Due: Friday, March 28

Reading

Read carefully Section 5.5 "Implicit Differentiation" in our text *Multivariable Calculus: A Linear Algebra Based Approach*.

Writing

Write out careful and complete solutions of Exercises 1, 2, and 3 below.

- 1. Let $f(x,y) = 2x^2 + 3y^2$ be a real-valued function defined on the plane.
 - (a) Let **P** be the point (5,4) and *C* the level curve of *f* containing **P**. Identify the nature of *C*: Is it a Circle? Parabola? Pair of Lines? Sketch a picture of *C*.
 - (b) Use classic implicit differentiation or some other method to find an equation for the line L tangent to C at \mathbf{P} .
 - (c) Determine the gradient vector \mathbf{v} of f at \mathbf{P} .
 - (d) Show that this gradient vector is orthogonal to any vector lying along L.
- 2. Let $g(x, y) = 2x^2 3y^2$ be a real-valued function defined on the plane.
 - (a) Let **P** be the point (5,4) and *C* the level curve of *g* containing P. Identify the nature of *C*: Is it a Circle? Parabola? Pair of Lines? Sketch a picture of *C*.
 - (b) Use classic implicit differentiation or some other method to find an equation for the line L tangent to C at \mathbf{P} .
 - (c) Determine the gradient vector \mathbf{v} of g at \mathbf{P} .
 - (d) Show that this gradient vector is orthogonal to any vector lying along L.
- 3. (Williamson and Trotter) A spaceship traveling in the plane along a path such that at time $t \ge 0$, the ship is at position $g(t) = (3t^2, t^3)$. The intensity of gamma radiation at the point (x,y) in the plane is $I(x,y) = x^2 y^2$,
 - wherever $I(x, y) \ge 0$. Describe fully, using a labeled graph where appropriate, the following:
 - (a) The level curve of I the ship is on at t = 1.
 - (b) The path of the ship for $t \ge 0$.
 - (c) The gradient vector of I at the ship's position when t = 1.
 - (d) The ship's velocity vector at t = 1.
 - (e) The time if there is one when the ship stops increasing its radiation risk and begins its

race to safety. Does its course become more dangerous later on?