MATH 223

Hints and Answers for Assignment 18 Exercises 20, 21, 22, 23, and 24 in Chapter 5

20. When x = y = 2 or x = y = -2 we get the maximum; when x = 2, y = -2 or x = -2, y = 2, we get the minimum.

21: Form the function

$$F(x, y, \lambda) = x^{\alpha}y^{\beta} + \lambda(x + \frac{y}{2} - D)$$

Taking the gradient and setting the components equal to zero gives us three equations

(1)
$$F_x = 0 : \alpha x^{\alpha - 1} y^{\beta} + \lambda = 0$$

(2) $F_y = 0 : \beta x^{\alpha} y^{\beta - 1} + \frac{1}{2} \lambda = 0$
(3) $F_{\lambda} = 0 : x + \frac{y}{2} = D$

If we multiply the second equation by 2, we find

$$\alpha x^{\alpha - 1} y^{\beta} = -\lambda = 2\beta x^{\alpha} y^{\beta - 1}.$$

Dividing through by $x^{\alpha-1}y^{\beta-1}$, we have

$$\alpha y = 2\beta x$$
 so $y = \frac{2\beta}{\alpha}x$.

Use this equation for y in the equation $x + \frac{y}{2} = D$:

$$x + \frac{\beta}{\alpha}x = D$$
 so $x = \frac{\alpha}{\alpha + \beta}D$, $y = \frac{2\beta}{\alpha + \beta}D$

For Zoey ($\alpha = \beta = 1/2$), the solution is x = D/2, y = D. For Sydney $\alpha = 1/2$, $\beta = 1/5$), the solution is x = 5D/7, y = 4D/7.

22: To apply the method of Lagrange multipliers we combine the revenue function with the budget constraint to form a function of three variables with the form

$$F(x, y, \lambda) = 180x^{\frac{2}{3}}y^{1}3 - \lambda(15x + 200y - 90000).$$

She should therefore pay for 4000 hours of labor and buy 150 tons of ingredients.

23: Anne's satisfaction function will be maximized and her time constraint will be met when $(x, y) = \left(\frac{2c}{3a}, \frac{c}{3b}\right)$.

24: Applying the method of Lagrange Multipliers to the constraint function P(x, y) we have $F(x, y, \lambda) = 22x^{\frac{3}{4}}y^{\frac{1}{4}} - \lambda(ax + by - c)$. Show $x = \frac{3c}{4a}$ and $\lambda = \frac{11}{2}3^{\frac{3}{4}}a^{-\frac{3}{4}}b^{\frac{1}{4}}$.