MATH 223 Hints and Answers for Assignment 23 Some Problems Involving Leibniz' Rule

A: Prove by contradiction. Suppose

$$\lim_{\mathbf{x}\to\mathbf{a}}f(x)=B$$

where B < 0. Let r = |B|/2 and let \mathcal{N} be the *r*-neighborhood of B. Show that every number in \mathcal{N} is negative. Explain why there must be some neighborhood \mathcal{M} of a such that if $x \neq a$ is in \mathcal{M} , then f(x) must lie in \mathcal{N} . Why does this lead to a contradiction?

B:

(1) F'(x) = 12x(2) F'(x) = 3(3) A direct calculation involves integration by parts. Here $F'(x) = \frac{e^2 - 1}{2}$.

C:. $F'(x) = \frac{\sin 12x}{x}$

D: Recall that $\int e^{-xy} dx = \frac{e^{-xy}}{-y}$.

$$G'(y) = \frac{e^{5y} - e^{-5y}}{y}$$