
MATH 223: Multivariable Calculus

Class 10: March 3, 2025



▶ Assignment 10 (For Friday)

▶ Limits and Continuity



Announcements
Exam 1: Tonight, 7 PM -

No Time Limit

No Books, Notes, Computers, etc.

Warner 100: A - J
Warner 101: K - Z



Today: Begin Chapter 4
Topic: Differentiability
Start with f : Rn → R1

Eventually: f : Rn → Rm

Derivative at point turns out to be m × n matrix.
But First: Limits and Continuity



Limits and Continuity: Preliminary Concepts
Open Set Interior Point
Closed Set Boundary Point
Limit Point Neighborhood

Example: S = {|x − (2, 3)| < 4} ∪ {(8, 0)}



Example: S = {|x − (2, 3)| < 4} ∪ {(8, 0)}



Example: S = {|x − (2, 3)| < 4} ∪ {(8, 0)}

Point Interior Point? Limit Point Boundary Point
Q Yes Yes Yes
R No Yes Yes
P No No Yes
W No No No



Differentiability = Local Linearity = Approximatable By Tangent
Object

f (x) ≈f (a) + f ′(a)(x − a)

or f (x)− f (a) ≈f ′(a)(x − a)

or f (x)− f (a)−m(x − a) ≈0

lim
x→a

f (x)− f (a)−m(x − a)

|x − a|
= 0

Generalizing for f : Rn → Rm

lim
x→a

f(x)− f(a)−M(x− a)

|x− a|
= 0

for some m × n matrix M.



f : Rn → Rm is differentiable at a if there exists an m × n matrix
M such that

lim
x→a

f(x)− f(a)−M(x− a)

|x− a|
= 0

Special Case: m = 1, n = 2,M is 1× 2 matrix∇f = (fx , fy ).



Example: f (x , y) = x2 + 2xy − y2 at (-1,2)
f (−1, 2) = −7

fx(x , y) = 2x + 2y so fx(−1, 2) = 2
fy (x , y) = 2x − 2y so fy (−1, 2) = −6

∇f (−1, 2) = (2,−6)
Equation of Tangent Plane:

z = −7 + (2,−6) · (x + 1, y − 2)

= −7 + 2x + 2− 6y + 12

= +7 + 2x − 6y



Review meaning of fx(−1, 2) = 2 and fy (−1, 2) = 6

What is rate of change of f at (-1,2) if we approach along
direction given by v = (3, 4)?

fv(−1, 2) = lim
t→0

f (−1 + 3t, 2 + 4t)− f (−1, 2)

t

= lim
t→0

(−1 + 3t)2 + 2(−1 + 3t)(2 + 4t)− (2 + 4t)2 − (−7)

t

= lim
t→0

17t2 − 18t

t

= lim
t→0

(17t − 18) = −18

Note: (∇f ) · v = (2,−6) · (3, 4) = (2)(3) + (−6)(4) = 6− 24− 18

COINCIDENCE?



Clairault’s Theorem

H(s, t) = [f (C )− f (B)]− [f (D)− f (A)]
H(s, t) =

[f (x0 + h, y0 + k)− f (x0 + h, y0)]− [f (x0, y + 0 + k)− f (x0, y0)]

Define G (x) = f (x , y0 + k)− f (x , y0)
Apply MVT to G on the interval [x0, x0 + h]. Result is an xc inside

the interval such hG ′(xc) = G (x0 + h)− G (x0)

Examine RHS:
G (x0 + h) = f (x0 + h, y0 + k)− f (x0 + h, y0) = f (C )− f (B)

and G (x0) = f (x0, y0 + k)− f (x0, y0) = f (D)− f (A)
so G (x0 + h)− G (x0) = F (h, k).

LHS: h G ′(xc) = h[fx(xc , yo + k)− fx(xc , y0)]





Summarizing,
hG ′(xc) = G (x0 + h)− G (x0) becomes
h[fx(xc , yo + k)− fx(xc , y0)] = F (h, k)

Now examine the function H(y) = fx(xc , y) on the y interval
[y0, y0 + k]

Applying the MVT yields a number yd inside that interval such that
k H ′(yd) = H(y0 + k)− H(y0)

k fxy (xc , yd) = fx(xc , y0 + k)− fx(xc , y0) =
F (h,k)

h
so

F (h, k) = kh fxy (xc , yd)

for some point (xc , yd) inside rectangle .



For the second half, begin with noting
H(s, t) = [f (C )− f (B)]− [f (D)− f (A)] =

[f (C )− f (D)]− [f (A)− f (B)]

and following then procedure of the first part, but differentiating
first with respect to y and second with respect to x , using MVT

twice.
Obtain F (h, k) = hk fyx(xc∗ , yd∗)

for some point (xc∗ , yd∗) inside rectangle.

Thus fxy (xc , yd) = fyx(xc∗ , yd∗)
By Continuity of fxy and fyx , both terms have limit
fxy (x0, y0) = fyx(x0, y0) as (h, k) approaches (0,0)


