MATH 223: Multivariable Calculus

Class 13: March 10, 2025

- ► Notes on Assignment 11
- ► Assignment 12

Partial With Respect to a Vector

$$f: \mathcal{R}^n \to \mathcal{R}^1$$

 ${f a}$ point and ${f v}$ vector in ${\cal R}^n$ Partial derivative $f_{f v}({f a})$ of f at ${f a}$ if we approach ${f a}$ along vector ${f v}$

We want
$$f_{\mathbf{v}}(\mathbf{a}) = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t}$$

Theorem: If f is differentiable at a, then

$$f_{\mathbf{v}}(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v}$$

Theorem: If
$$f: \mathcal{R}^n \to \mathcal{R}^1$$
 is differentiable at \mathbf{a} , then $f_{\mathbf{v}}(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v}$

Proof of Theorem:

(Case 1): $\mathbf{v} = \mathbf{0}$: Both sides are 0.

(Case 2): $\mathbf{v} \neq \mathbf{0}$:

Note: $|\mathbf{v}| \neq 0$ so we can divide by $|\mathbf{v}|$ if necessary.

By differentiability of f at a, we have

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{f(\mathbf{x})-f(\mathbf{a})-\nabla f(\mathbf{a})\cdot(\mathbf{x}-\mathbf{a})}{|\mathbf{x}-\mathbf{a}|}=0$$

Set $\mathbf{x} = \mathbf{a} + t\mathbf{v}$ so $\mathbf{x} \to \mathbf{a}$ is equivalent to $t \to 0$ and $\mathbf{x} - \mathbf{a} = t\mathbf{v}$

We have

$$\lim_{t\to 0} \frac{f(\mathbf{a}+t\mathbf{v})-f(\mathbf{a})-\nabla f(\mathbf{a})\cdot t\mathbf{v}}{|t\mathbf{v}|}=0$$

$$\lim_{t\to 0} \frac{f(\mathbf{a}+t\mathbf{v})-f(\mathbf{a})-\nabla f(\mathbf{a})\cdot t\mathbf{v}}{|t\mathbf{v}|}=0$$

Now
$$|t\mathbf{v}|=|t||\mathbf{v}|$$

Can take $t>0$ (Why?). So $|t\mathbf{v}|=t|\mathbf{v}|$
We can write limit as

$$\lim_{t\to 0} \left[\frac{f(\mathbf{a}+t\mathbf{v})-f(\mathbf{a})}{t|\mathbf{v}|} - \frac{t\nabla f(\mathbf{a})\cdot \mathbf{v}}{t|\mathbf{v}|} \right] = 0$$

Factor out t from second term and multiply both sides by the nonzero scalar $|\mathbf{v}|$ t to obtain

$$\lim_{t\to 0}\left[\frac{f(\mathbf{a}+t\mathbf{v})-f(\mathbf{a})}{t}-\nabla f(\mathbf{a})\cdot\mathbf{v}\right]=0$$

$$\lim_{t\to 0} \left[\frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t} - \nabla f(\mathbf{a}) \cdot \mathbf{v} \right] = 0$$
implies

$$\lim_{t\to 0} \left\lceil \frac{f(\mathbf{a}+t\mathbf{v})-f(\mathbf{a})}{t} \right\rceil = \nabla f(\mathbf{a})\cdot \mathbf{v}$$

But the left hand side is, by definition $f_{\mathbf{v}}(\mathbf{a})$

Directional Derivative

$$f: \mathcal{R}^n \to \mathcal{R}^1$$

a point and **v** vector in \mathbb{R}^n

Find the directional derivative of f at \mathbf{a} in the direction of the vector \mathbf{v} is

$$\mathit{f}_{u}(a)$$
 where $u = \dfrac{v}{|v|}$

Rate of Change in Direction \mathbf{u} is

$$\nabla f(\mathbf{a}) \cdot \mathbf{u} = |\nabla f(\mathbf{a})| |\mathbf{u}| \cos \theta = |\nabla f(\mathbf{a})| \cos \theta$$

since
$$|\mathbf{u}|=1$$
.

Maximum rate of change occurs when $\cos \theta = 1$; that is $\theta = 0$ so pick **u** in the direction of the gradient.

Maximum Rate of Change Example

$$f(x,y) = 356 - x^2 - 3y^2$$
 at $\mathbf{a} = (4,1)$
 $f(\mathbf{a}) = f(4,1) = 337$
 $f_x(x,y) = (-2x), f_y(x,y) = -6y$ so $f_x(\mathbf{a}) = -8, f_y(\mathbf{a}) = -6$
 $\nabla f(\mathbf{a}) = (-8, -6)$

$$f(x,y) = 356 - x^2 - 3y^2$$
 at $\mathbf{a} = (4,1)$
 $f(\mathbf{a}) = f(4,1) = 337$
 $f_x(x,y) = (-2x), f_y(x,y) = -6y$ so $f_x(\mathbf{a}) = -8, f_y(\mathbf{a}) = -6$
 $\nabla f(\mathbf{a}) = (-8, -6)$

V	u	Rate of Change
(-1,0)	(-1,0)	8
(0,-1)	(0,-1)	6
(-1,-1)	$\left(\frac{-1}{\sqrt{2}},\frac{-1}{\sqrt{2}}\right)$	$7\sqrt{2} = 9.89949$
(-3,-2)	$\left(\frac{-3}{\sqrt{13}},\frac{-2}{\sqrt{13}}\right)$	$\frac{36}{\sqrt{13}} = 9.89446$
(-8,-6)	$\left(\frac{-8}{\sqrt{100}}, \frac{-6}{\sqrt{100}}\right)$	10

Generalized Mean Value Theorem for $f: \mathcal{R}^n \to \mathcal{R}^1$ If f is differentiable at each point of a line segment S between \mathbf{a} and \mathbf{b} , then there is a least point \mathbf{c} on S such that $f(\mathbf{b}) - f(\mathbf{a}) = \nabla f(\mathbf{c}) \cdot (\mathbf{b} - \mathbf{a})$

Recall classic MVT from Single Variable Calculus: If $f: \mathcal{R}^1 \to \mathcal{R}^1$ is differentiable on a closed interval [a,b], then there is at least on c inside the interval such that f(b) - f(a) = f'(c)(b-a).

An Important Consequence of classic MVT:

Suppose
$$f'(x) = g'(x)$$
 for all x in $[a, b]$. Then $f(x) = g(x) + C$ for some constant C and all x in the interval.

Proof: Let
$$H(x) = f(x) - g(x)$$
.

Then
$$H'(x) = f'(x) - g'(x) = 0$$
 for all x in the interval.

Now let
$$x_1 < x_2$$
 be any two points in the interval.

By MVT:
$$H(2) - H(x_1) = H'(c)(x_2 - x_1) = 0(x_2 - x_1) = 0$$
. Thus

H is a constant function:
$$H(x) = C$$
 for all x.

So
$$f(x) - g(x) = C$$
 and hence $f(x) = g(x) + C$.

The same argument shows

$$\nabla f \equiv \nabla g$$
 implies $f(\mathbf{x}) = g(\mathbf{x}) + C$

Generalized Mean Value Theorem for $f: \mathbb{R}^n \to \mathbb{R}^1$ If f is differentiable at each point of a line segment S between \mathbf{a} and \mathbf{b} , then there is a least point \mathbf{c} on S such that

Proof of Generalized Mean Value Theorem

Define a new function $\mathbf{g}:[0,1]\to\mathcal{R}^n$ by $\mathbf{g}(t)=\mathbf{a}+t(\mathbf{b}-\mathbf{a})$ Note $\mathbf{g}(0)=\mathbf{a}$ and $\mathbf{g}(1)=\mathbf{b}$ and $\mathbf{g}(t)$ lies on S and $\mathbf{g}'(t)=\mathbf{b}-\mathbf{a}$

Consider the composition $H(t) = f(\mathbf{g}(t)) : [0,1] \to \mathcal{R}^1$ Apply Classic MVT to H:

$$H(1) - H(0) = H'(t_c)(1-0) = H'(t_c)$$

but
$$H(1) = f(g(1)) = f(\mathbf{b})$$
 and $H(0) = f(g(0)) = f(\mathbf{a})$
Thus $f(\mathbf{b}) - f(\mathbf{a}) = H'(t_c)$
What is $H'(t)$? By Chain Rule: $f'(\mathbf{g}(t))\mathbf{g}'(t) = \nabla f(\mathbf{g}(t)) \cdot (\mathbf{b} - \mathbf{a})$
Let $\mathbf{C} = \mathbf{g}(t_c)$. Then

$$f(\mathbf{b}) - f(\mathbf{a}) = H'(t_c) = \nabla f(\mathbf{C}) \cdot (\mathbf{b} - \mathbf{a})$$