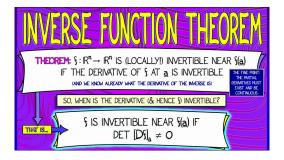
MATH 223: Multivariable Calculus



Class 15: March 14, 2025

- ► Notes on Assignment 13
- ► Assignment 14

Review Chain Rule

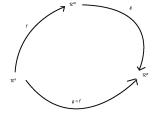
Review Chain Rule Implicit Differentiation

Review Chain Rule Implicit Differentiation Change of Variable

Review Chain Rule
Implicit Differentiation
Change of Variable
Inverse Function Theorem

Review Chain Rule Implicit Differentiation **Change of Variable** Inverse Function Theorem Gradient Fields

The Chain Rule



$$(g \circ f)' = g'(f(x))f'(x)$$

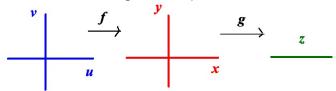
(p x m) (m x n) matrix matrix

p x n matrix

Show
$$(z_u)^2 + (z_v)^2 = 4(u^2 + v^2)[(z_x)^2 + (z_y)^2]$$

Show
$$(z_u)^2 + (z_v)^2 = 4(u^2 + v^2)[(z_x)^2 + (z_y)^2]$$

Begin with a picture



Show
$$(z_u)^2 + (z_v)^2 = 4(u^2 + v^2)[(z_x)^2 + (z_y)^2]$$

Show
$$(z_u)^2 + (z_v)^2 = 4(u^2 + v^2)[(z_x)^2 + (z_y)^2]$$

Let $\binom{x}{y} = \binom{u^2 - y^2}{2uv} = f\binom{u}{v}$

Show
$$(z_u)^2 + (z_v)^2 = 4(u^2 + v^2)[(z_x)^2 + (z_y)^2]$$

Let $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u^2 - y^2 \\ 2uv \end{pmatrix} = f\begin{pmatrix} u \\ v \end{pmatrix}$
Then $f'\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2u & -2v \\ 2v & 2u \end{pmatrix}, g'\begin{pmatrix} x \\ y \end{pmatrix} = (g_x, g_y) = (z_x, z_y)$

Show
$$(z_u)^2 + (z_v)^2 = 4(u^2 + v^2)[(z_x)^2 + (z_y)^2]$$

Let $\binom{x}{y} = \binom{u^2 - y^2}{2uv} = f\binom{u}{v}$
Then $f'\binom{u}{v} = \binom{2u - 2v}{2v - 2u}, g'\binom{x}{y} = (g_x, g_y) = (z_x, z_y)$
Now $(g \circ f)' = g'(f)f' = (z_x, z_y)\binom{2u - 2v}{2v - 2u} = (2uz_x + 2vz_y, -2vz_x + 2uz_y) = (z_u, z_v)$

Show
$$(z_u)^2 + (z_v)^2 = 4(u^2 + v^2)[(z_x)^2 + (z_y)^2]$$

Let $\binom{x}{y} = \binom{u^2 - y^2}{2uv} = f\binom{u}{v}$
Then $f'\binom{u}{v} = \binom{2u - 2v}{2v 2u}, g'\binom{x}{y} = (g_x, g_y) = (z_x, z_y)$
Now $(g \circ f)' = g'(f)f' = (z_x, z_y)\binom{2u - 2v}{2v 2u} = (2uz_x + 2vz_y, -2vz_x + 2uz_y) = (z_u, z_v)$
Thus

$$z_u^2 + z_v^2 = 4u^2z_x^2 + 8uvz_xz_y + 4v^2z_y^2 + 4v^2z_x^2 - 8uvz_xz_y + 4u^2z_y^2$$

= $4u^2(z_x^2 + z_y^2) + 4v^2(z_x^2 + z_y^2) = 4(u^2 + v^2)(z_x^2 + z_y^2)$

Show
$$(z_u)^2 + (z_v)^2 = 4(u^2 + v^2)[(z_x)^2 + (z_y)^2]$$

Let $\binom{x}{y} = \binom{u^2 - y^2}{2uv} = f\binom{u}{v}$
Then $f'\binom{u}{v} = \binom{2u - 2v}{2v 2u}, g'\binom{x}{y} = (g_x, g_y) = (z_x, z_y)$
Now $(g \circ f)' = g'(f)f' = (z_x, z_y)\binom{2u - 2v}{2v 2u} = (2uz_x + 2vz_y, -2vz_x + 2uz_y) = (z_u, z_v)$
Thus

$$z_u^2 + z_v^2 = 4u^2z_x^2 + 8uvz_xz_y + 4v^2z_y^2 + 4v^2z_x^2 - 8uvz_xz_y + 4u^2z_y^2$$

= $4u^2(z_x^2 + z_y^2) + 4v^2(z_x^2 + z_y^2) = 4(u^2 + v^2)(z_x^2 + z_y^2)$

Example: Find slope of tangent line to the graph of $4x^2 + 5v^2 = 61$ at (2,3).

(Check point lies on curve:
$$4(2^2) + 5(3^2) = 16 + 45 = 61$$
)

A: Direct Solution

$$5y^{2} = 61 - 4x^{2} \Rightarrow y^{2} = \frac{61 - 4x^{2}}{5} \Rightarrow y = \sqrt{\frac{61 - 4x^{2}}{5}}$$
$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{61 - 4x^{2}}{5}\right)^{-1/2} \frac{-8x}{5}$$

Evaluate at
$$x = 2$$
: to get $\frac{1}{2} \left(\frac{45}{5} \right)^{-1/2} \frac{-16}{5} = -\frac{8}{15}$

Example: Find slope of tangent line to the graph of

$$4x^2 + 5y^2 = 61$$
 at (2,3).

Example: Find slope of tangent line to the graph of $4x^2 + 5y^2 = 61$ at (2,3).

(Check point lies on curve:
$$4(2^2) + 5(3^2) = 16 + 45 = 61$$
)

Example: Find slope of tangent line to the graph of $4x^2 + 5y^2 = 61$ at (2,3).

(Check point lies on curve:
$$4(2^2) + 5(3^2) = 16 + 45 = 61$$
)

Example: Find slope of tangent line to the graph of $4x^2 + 5v^2 = 61$ at (2,3).

(Check point lies on curve: $4(2^2) + 5(3^2) = 16 + 45 = 61$)

A: Direct Solution

$$5y^2 = 61 - 4x^2 \Rightarrow y^2 = \frac{61 - 4x^2}{5} \Rightarrow y = \sqrt{\frac{61 - 4x^2}{5}}$$

Example: Find slope of tangent line to the graph of $4x^2 + 5y^2 = 61$ at (2,3).

(Check point lies on curve:
$$4(2^2) + 5(3^2) = 16 + 45 = 61$$
)

A: Direct Solution

$$5y^2 = 61 - 4x^2 \Rightarrow y^2 = \frac{61 - 4x^2}{5} \Rightarrow y = \sqrt{\frac{61 - 4x^2}{5}}$$

$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{61 - 4x^2}{5} \right)^{-1/2} \frac{-8x}{5}$$

Example: Find slope of tangent line to the graph of $4x^2 + 5v^2 = 61$ at (2,3).

(Check point lies on curve: $4(2^2) + 5(3^2) = 16 + 45 = 61$)

A: Direct Solution

$$5y^2 = 61 - 4x^2 \Rightarrow y^2 = \frac{61 - 4x^2}{5} \Rightarrow y = \sqrt{\frac{61 - 4x^2}{5}}$$

$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{61 - 4x^2}{5} \right)^{-1/2} \frac{-8x}{5}$$

Evaluate at x = 2: to get $\frac{1}{2} \left(\frac{45}{5} \right)^{-1/2} \frac{-16}{5} = -\frac{8}{15}$

Example: Find slope of tangent line to the graph of $4x^2 + 5y^2 = 61$ at (2,3).

B: Classic Implicit Differentiation

Example: Find slope of tangent line to the graph of $4x^2 + 5y^2 = 61$ at (2,3).

B: Classic Implicit Differentiation

Treat y as an unknown function of x and differentiate:

Example: Find slope of tangent line to the graph of $4x^2 + 5y^2 = 61$ at (2,3).

B: Classic Implicit Differentiation

Treat y as an unknown function of x and differentiate:

$$8x + 10y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{-8x}{10y} = -\frac{4x}{5y}$$

Example: Find slope of tangent line to the graph of $4x^2 + 5y^2 = 61$ at (2,3).

B: Classic Implicit Differentiation

Treat y as an unknown function of x and differentiate:

$$8x + 10y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{-8x}{10y} = -\frac{4x}{5y}$$

Evaluate at
$$x = 2, y = 3$$
: to get $-\frac{8}{15}$

Example: Find slope of tangent line to the graph of $4x^2 + 5y^2 = 61$ at (2,3).

B: Classic Implicit Differentiation

Treat y as an unknown function of x and differentiate:

$$8x + 10y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{-8x}{10y} = -\frac{4x}{5y}$$

Evaluate at x = 2, y = 3: to get $-\frac{8}{15}$

C: Use Level Curve Idea

If $f(x, y) = 4x^2 + 5y^2$, then (2,3) lies on level curve f(x, y) = 61.

Example: Find slope of tangent line to the graph of $4x^2 + 5y^2 = 61$ at (2,3).

B: Classic Implicit Differentiation

Treat y as an unknown function of x and differentiate:

$$8x + 10y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{-8x}{10y} = -\frac{4x}{5y}$$

Evaluate at x = 2, y = 3: to get $-\frac{8}{15}$

C: Use Level Curve Idea

If $f(x,y) = 4x^2 + 5y^2$, then (2,3) lies on level curve f(x,y) = 61. Then $\nabla f(2,3)$ is normal to the curve so slope of tangent line is the negative of the slope of the gradient.

Example: Find slope of tangent line to the graph of $4x^2 + 5y^2 = 61$ at (2,3).

B: Classic Implicit Differentiation

Treat y as an unknown function of x and differentiate:

$$8x + 10y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{-8x}{10y} = -\frac{4x}{5y}$$

Evaluate at x = 2, y = 3: to get $-\frac{8}{15}$

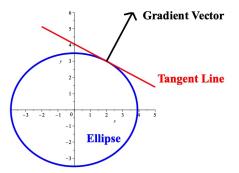
C: Use Level Curve Idea

If $f(x,y) = 4x^2 + 5y^2$, then (2,3) lies on level curve f(x,y) = 61.

Then $\nabla f(2,3)$ is normal to the curve so slope of tangent line is the negative of the slope of the gradient.

 $\nabla f(x,y) = (8x,10y)$ has slope $\frac{10y}{8x} = \frac{15}{8}$ at (2,3). Hence slope of tangent line is $-\frac{8}{15}$.

Example: Find slope of tangent line to the graph of $4x^2 + 5y^2 = 61$ at (2,3).



The ellipse is the level curve F(x, y) = 61 or F(x, y) - 61 = where $F(x, y) = 4x^2 + 5y^2$.

A piece of the curve around (2,3) is the graph of some implicit function y = f(x). We want f'(2). Define a new function ${f G}:{\cal R}^1 o{\cal R}^2$ by

$$\mathbf{G}(x) = \begin{pmatrix} x \\ f(x) \end{pmatrix}$$
 so $\mathbf{G}'(x) = \begin{pmatrix} 1 \\ f'(x) \end{pmatrix}$

Note that this is the tangent vector.

Then
$$(F \circ \mathbf{G})(x) = 61$$
 for all x

Take Derivative Using The Chain Rule:

$$F'(\mathbf{G}(x))\mathbf{G}'(x) = 0$$
. Thus $\nabla F(\mathbf{G}(x)\begin{pmatrix} 1 \\ f'(x) \end{pmatrix} = 0$

Now
$$G(2) = 3$$
 and $F(x, y) = 4x^2 + 5y^2$ implies $\nabla F(x, y) = (8x, 10y)$.

Hence
$$\nabla F(G(2)) = (8 \times 2, 10 \times 3) = (16, 30).$$

We have
$$(16,30) \binom{1}{f'(2)} = 0$$
 so $16 + 30f'(2) = 0$ and thus $f'(2) = -16/30 = -8/15$.

Change of Variable

Example: Find
$$\int (10x + 15)^{1/3} dx$$

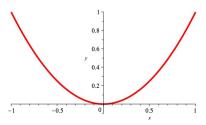
Change of Variable u=10x+15 so $\mathbf{x}=\frac{\mathbf{u}-\mathbf{15}}{\mathbf{10}}$ and $dx=\frac{1}{10}du$

Integral becomes
$$\int (10x+15)^{1/3} dx = \int u^{1/3} \frac{1}{10} du = \frac{1}{10} \int u^{1/3} du$$
$$= \frac{1}{10} \times \frac{3}{4} u^{4/3} + C$$
$$= \frac{3}{40} (10x+15)^{4/3} + C$$

 $x = \frac{u-15}{10}$ is key step. WE MUST BE ABLE TO INVERT THE SUBSTITUTION.

Change of Variable should be invertible, a one-to-one function.

Not Every Function is Invertible

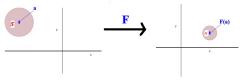


If $y = x^2$, we can not solve unambiguously for x in terms of y globally

$$x = \pm \sqrt{y}$$

but we can solve locally except at origin.

Inverse Function Theorem for $f: \mathcal{R}^n \to \mathcal{R}^n$



IF

- **a** is a point in \mathbb{R}^n
- ► S is an open set containing a
- ightharpoonup f is continuously differentiable on S
- ▶ Derivative Matrix $\mathbf{f}'(\mathbf{a})$ is invertible

Then

There is a neighborhood N of a on which f^{-1} is defined and

$$\left(\mathbf{f}^{-1}(\mathbf{f}(\mathbf{x})\right)' = [\mathbf{f}'(\mathbf{x})]^{-1}$$
 for all \mathbf{x} in N

Example:
$$\mathbf{f}(x, y) = (\cos x, x \cos x - y)$$

$$J = \mathbf{f}'(x, y) = \begin{pmatrix} -\sin x & 0\\ \cos x - x\sin x & -1 \end{pmatrix}$$

 $\det J = \sin x$ so we have invertibility if $x \neq 0, \pi$.

$$(\mathbf{f}^{-1}(x,y))' = J^{-1} = \begin{pmatrix} \frac{-1}{\sin x} & 0\\ \frac{x \sin x - \cos x}{\sin x} & -1 \end{pmatrix}$$

At
$$x = \pi/6, y = 2$$
:

$$f\left(\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}, \frac{\pi}{6} \frac{\sqrt{3}}{2} - 2\right) = \left(\frac{\sqrt{3}}{2}, \frac{\sqrt{3}\pi}{12} - 2\right)$$

and

$$\mathbf{f}^{-1}(\pi/6,2))' = \begin{pmatrix} -2 & 0 \\ \frac{\pi}{6} - \sqrt{3} & -1 \end{pmatrix}$$

Gradient Fields

A Gradient Field is just a function from \mathbb{R}^n to \mathbb{R}^n which is the gradient of a differentiable real-valued function.

The gradient
$$\nabla f(x,y)$$
 of $f: \mathbb{R}^2 \to \mathbb{R}^2$.
Example 1: $f(x,y) = x^2 \sin y$
Here $\nabla f(x,y) = (2x,x^2\cos y) = (f_x(x,y),f_y(x,y))$
Note $f_{xy} = x^2\cos y = f_{yx}$ [Equality of Mixed Partials]

Example 2: Is
$$\mathbf{F}(x,y) = (y,2x)$$
 a gradient field?
If $\mathbf{F} = \nabla f$, then

$$f_x(x,y) = y \implies f_{xy}(x,y) = 1$$

 $f_y(x,y) = 2x \implies f_{yx}(x,y) = 2$

But these are not equal!

What f we try to build an f by "Partial Integration"? $f_x(x,y) = y \implies f(x,y) = xy + G(y) \implies f_y(x,y) = x + G'(y)$ but we would need G a function of y such that G'(y) = x.

We can work backwards on Example 1:

Given $f_x(x,y) = 2x \sin y$, "partial integration" with respect to x produces $f(x,y) = x^2 \sin y + G(y)$ and that yields $f_y = x^2 \cos y + G'(y)$ which equals $x^2 \cos y$ by choosing G to be any constant function.

