
MATH 223: Multivariable Calculus

Class 17: March 26, 2025



▶ Notes on Assignment 15

▶ Assignment 16

Exam 2 Next Monday Night



Today

Implicit Differentiation II

Implicit Function Theorem



Implicit Differentiation II

The Surface 2x3y + yx2 + t2 = 0 and the Plane x + y + t − 1 = 0

intersect along a Curve which contains the point
t = 1, x = −1, y = 1

Check: Surface: 2(−1)(1) + 1(−1)2 + 12 = 0; Plane:
−1 + 1 + 1− 1 = 0

Treat x and y as unknown functions of t.
Problem: Find x ′(t) and y ′(t) at (t, x , y) = (1,−1, 1)

Each equation defines a surface in 3-space and intersection of two
surfaces is a curve.

The curve has some parametrization G

G(t) =

 t
x(t)
y(t)

 ,R1 → R3



G(t) =

 t
x(t)
y(t)

 ,R1 → R3

Consider R1 G−→ R3 F−→ R2

where F(x , y , t) =

(
F1(t)
F2(t)

)
=

(
2x3y + yx2 + t2

x + y + t − 1

)
=

(
0
0

)
Then F(G(t)) = 0 for all t

Differentiate using Chain Rule:

[F(G(t))]′ = F′(G(t))G′(t) =

(
F1t F1x F1y
F2t F2x Fyt

) 1
x ′

y ′

 =

(
0
0

)
(
2t 6x2y + 2xy 2x3 + x2

1 1 1

) 1
x ′

y ′

 =

(
0
0

)



Write(
2t 6x2y + 2xy 2x3 + x2

1 1 1

) 1
x ′

y ′

 =

(
0
0

)
as(

2t
1

)
+

(
6x2y + 2xy 2x3 + x2

1 1

)(
x ′

y ′

)
=

(
0
0

)
or(

6x2y + 2xy 2x3 + x2t
1 1

)(
x ′

y ′

)
= −

(
2t
1

)
Multiply each side by inverse of coefficient matrix(

x ′

y ′

)
= −

(
6x2y + 2xy 2x3 + x2

1 1

)−1(
2t
1

)



(
x ′

y ′

)
= −

(
6x2y + 2xy 2x3 + x2

1 1

)−1(
2t
1

)
Evaluate at the given point: t = 1, x = −1, y = 1(

x ′

y ′

)
= −

(
6− 2 −2 + 1
1 1

)−1(
2
1

)
= −

(
4 −1
1 1

)−1(
2
1

)
= −1

5

(
1 1
−1 4

)(
2
1

)
= −1

5

(
3
2

)
=

(
−3/5
−2/5

)



More Generally{
F1(x , y , t) = 0
F2(x , y , t) = 0

}
define x , y implicitly as functions of t

Problem: Find x ′(t) and y ′(t) where f(t) =

(
x
y

)
.

Set Up: R1 G−→ R3 F−→ R2 where G(t) =

 t
x(t)
y(t)

 ,F(t, x , y) =

(
F1
F2

)
Then F(G(t)) ≡ 0 so F′(G(t))G′(t) = 0 which we write as

(Ft ,Fx ,Fy )

 1
x ′

y ′

 = 0 or Ft + [Fx ,Fy ][f
′(t)] = 0

f ′(t) = −[Fx ,Fy ]
−1Ft

Here the notation is

Fx =

(
F1x
F2x

)
,Fy =

(
F1y
F2y

)
,Ft =

(
F1t
F2t

)





Today:
Maxima and Minima of Real-Valued Functions



Let D be a subset of Rn and f : D → R1 be a real-valued function
with x⃗o a point in D.

Definition: f has an absolute maximum at x⃗o if f (x⃗o) ≥ f (x⃗) for
all x⃗ in D.

Note: ≥ makes sense because we are comparing real numbers.
f has a relative maximum at x⃗o if there is a neighborhood N

around x⃗o such that f (x⃗o) ≥ f (x⃗) for all x⃗ in N.



Theorem: Let x⃗o be an interior point of D. If f is differentiable at
x⃗o and f has a relative maximum or minimum at x⃗o ,

then f ′(x⃗o) = ∇(x⃗o) = 0⃗.
Proof: Suppose f has a relative maximum at x⃗o

Let u⃗ be any unit vector in Rn.

Then
∂f

∂u⃗
= lim

t→0

f (x⃗0 + tu⃗)− f (x⃗0)

t

(a) Take lim
t→0+

:
−
+

≤ 0

thus
∂f

∂u⃗
= 0 for all u⃗

(b) Take lim
t→0−

:
−
−

≥ 0

Taking u⃗ to be unit vectors gives ∇f (x⃗0) = 0



Theorem: f differentiable at relative extrema implies
gradient is 0.

The Theorem Has Its Limitations:
(1) The function can have an extreme value at a point where

it is not differentiable.
Example: f (x , y) =

√
x2 + y2 has minimum at (0,0) but is not
differentiable there.

fx(x , y) =
x√

x2+y2
, fy (x , y) =

y√
x2+y2

,



Example: f (x , y) =
√
x2 + y2 has minimum at (0,0) but is not
differentiable there.

Analogue in Calculus I:
f (x) =

√
x2 = |x |



Theorem: f differentiable at relative extrema implies
gradient is 0.

The Theorem Has Its Limitations:
(2) We can have ∇f (x⃗0) = 0 but no extreme point at x⃗0

∇f (x , y) = (2x , 2y)



There is a Maximum is one direction and a Minimum in another
Saddle Point



Quiz:
Name a Famous

Commercial Food Product
That Exhibits
a Saddle Point





Definition: A point x⃗0 in the domain of f is a Critical Point of f if
(a) ∇f (x⃗0) = 0⃗

or
(b) ∇f does not exist at x⃗0.

Extreme Values Can Occur at Critical Points or Points on
the Boundary



Example: Temperature Distribution on disk of radius 1 centered at
origin is T (x , y) = 2x2 + 4y2 + 2x + 1.

For Critical Points, examine ∇T = (4x + 2, 8y)
∇T = (0, 0) only at x = −1

2 , y = 0
which does lie inside the disk.

Note T (−1
2 , 0) = 2(14) + 4(02) + 2(−1

2) + 1 = 1
2 , and T (0, 0) = 1.



Analyze Along Boundary:
x2 + y2 = 1 so y2 = 1− x2 and

T (x , y) = g(x) = 2x2 + 4(1− x2) + 2x + 1 = −2x2 + 2x + 5
Thus g ′(x) = −4x + 2, g ′′(x) = −4 so x = 1

2 gives a maximum.

x = 1
2 gives y2 = 1− 1

4 = 3
4 so y = ±

√
3
2

red numbers are values of the function





Parametrize Boundary
x = cos t, y = sin t for 0 ≤ t ≤ 2π

T (x , y) = 2x2 + 4y2 + 2x + 1

= 2 cos2 t + 4 sin2 t + 2 cos t + 1

= 2 cos2 t + 2 sin2 t + 2 sin2 t + 2 cos t + 1

= 2 + 2 sin2 t + 2 cos t + 1 = 2 sin2 t + 2 cos t + 3

= H(t)

H(0) = 2 · 1 + 2 · 0 + 3 = 5,H(π) = 2 · 1 + 2 · −1 + 3 = 1
Now H ′(t) = 4 sin t cos t − 2 sin t = 2 sin t(2 cos t − 1) so

H ′(t) = 0 at sin t = 0 or cos t = 1
2

The first condition gives t = 0, t = π, the second occurs when
t = π

3 .



Next Time:

Solving Constrained Optimization Problems
Using Lagrange Multipliers


