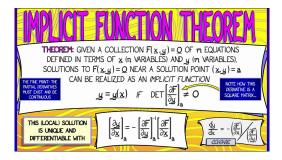
MATH 223: Multivariable Calculus



Class 17: March 26, 2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Notes on Assignment 15 Assignment 16 Exam 2 Next Monday Night

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Today

Implicit Differentiation II Implicit Function Theorem

Implicit Differentiation II

The Surface $2x^3y + yx^2 + t^2 = 0$ and the Plane x + y + t - 1 = 0

intersect along a Curve which contains the point $t=1, x=-1, y=1 \label{eq:tau}$

Check: Surface:
$$2(-1)(1) + 1(-1)^2 + 1^2 = 0$$
; Plane:
 $-1 + 1 + 1 - 1 = 0$
Treat *x* and *x* as unknown functions of *t*

From the function of the second seco

Each equation defines a surface in 3-space and intersection of two surfaces is a curve.

The curve has some parametrization ${\boldsymbol{\mathsf{G}}}$

$$\mathbf{G}(t) = egin{pmatrix} t \ x(t) \ y(t) \end{pmatrix}, \mathcal{R}^1 o \mathcal{R}^3$$

$$\mathbf{G}(t) = \begin{pmatrix} t \\ x(t) \\ y(t) \end{pmatrix}, \mathcal{R}^1 \to \mathcal{R}^3$$

Consider $\mathcal{R}^1 \xrightarrow{\mathbf{G}} \mathcal{R}^3 \xrightarrow{\mathbf{F}} \mathcal{R}^2$

where
$$\mathbf{F}(x, y, t) = \begin{pmatrix} F_1(t) \\ F_2(t) \end{pmatrix} = \begin{pmatrix} 2x^3y + yx^2 + t^2 \\ x + y + t - 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Then $\mathbf{F}(\mathbf{G}(t)) = \mathbf{0}$ for all t
Differentiate using Chain Rule:
 $\mathbf{F}(\mathbf{G}(t))]' = \mathbf{F}'(\mathbf{G}(t))\mathbf{G}'(t) = \begin{pmatrix} F_{1t} & F_{1x} & F_{1y} \\ F_{2t} & F_{2x} & F_{yt} \end{pmatrix} \begin{pmatrix} 1 \\ x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $\begin{pmatrix} 2t & 6x^2y + 2xy & 2x^3 + x^2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

ſ

Write

$$\begin{pmatrix} 2t & 6x^2y + 2xy & 2x^3 + x^2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

as

$$\begin{pmatrix} 2t\\1 \end{pmatrix} + \begin{pmatrix} 6x^2y + 2xy & 2x^3 + x^2\\1 & 1 \end{pmatrix} \begin{pmatrix} x'\\y' \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$$

or

$$\begin{pmatrix} 6x^2y + 2xy & 2x^3 + x^2t \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = - \begin{pmatrix} 2t \\ 1 \end{pmatrix}$$

Multiply each side by inverse of coefficient matrix

$$\binom{x'}{y'} = -\binom{6x^2y + 2xy}{1} \frac{2x^3 + x^2}{1}^{-1} \binom{2t}{1}$$

$$\begin{pmatrix} x'\\ y' \end{pmatrix} = -\begin{pmatrix} 6x^2y + 2xy & 2x^3 + x^2\\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2t\\ 1 \end{pmatrix}$$

Evaluate at the given point: t = 1, x = -1, y = 1

$$\begin{pmatrix} x'\\y' \end{pmatrix} = -\begin{pmatrix} 6-2 & -2+1\\1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2\\1 \end{pmatrix}$$
$$= -\begin{pmatrix} 4 & -1\\1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2\\1 \end{pmatrix}$$
$$= -\frac{1}{5} \begin{pmatrix} 1 & 1\\-1 & 4 \end{pmatrix} \begin{pmatrix} 2\\1 \end{pmatrix}$$
$$= -\frac{1}{5} \begin{pmatrix} 3\\2 \end{pmatrix} = \begin{pmatrix} -3/5\\-2/5 \end{pmatrix}$$

<ロト < 団ト < 三ト < 三ト < 三 ・ つへの</p>

More Generally

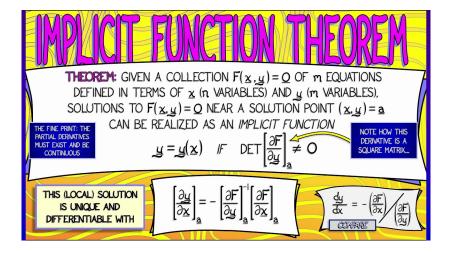
 $\begin{cases} F_1(x, y, t) = 0 \\ F_2(x, y, t) = 0 \end{cases} define x, y implicitly as functions of t$

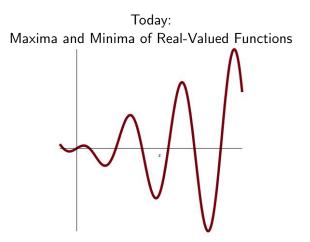
<u>Problem</u>: Find x'(t) and y'(t) where $\mathbf{f}(t) = \begin{pmatrix} x \\ y \end{pmatrix}$.

Set Up:
$$\mathcal{R}^1 \xrightarrow{\mathbf{G}} \mathcal{R}^3 \xrightarrow{\mathbf{F}} \mathcal{R}^2$$
 where $\mathbf{G}(t) = \begin{pmatrix} t \\ x(t) \\ y(t) \end{pmatrix}$, $\mathbf{F}(t, x, y) = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}$

Then $\mathbf{F}(\mathbf{G}(t)) \equiv 0$ so $\mathbf{F}'(\mathbf{G}(t))\mathbf{G}'(t) = 0$ which we write as

$$(F_t, F_x, F_y) \begin{pmatrix} 1\\ x'\\ y' \end{pmatrix} = 0 \text{ or } F_t + [F_x, F_y][\mathbf{f}'(t)] = 0$$
$$\mathbf{f}'(t) = -[F_x, F_y]^{-1}F_t$$
Here the notation is
$$F_x = \begin{pmatrix} F_{1x}\\ F_{2x} \end{pmatrix}, F_y = \begin{pmatrix} F_{1y}\\ F_{2y} \end{pmatrix}, F_t = \begin{pmatrix} F_{1t}\\ F_{2t} \end{pmatrix}$$



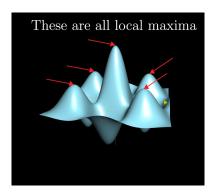


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let D be a subset of \mathbb{R}^n and $f: D \to \mathbb{R}^1$ be a real-valued function with $\vec{x_o}$ a point in D.

<u>Definition</u>: f has an **absolute maximum** at $\vec{x_o}$ if $f(\vec{x_o}) \ge f(\vec{x})$ for all \vec{x} in D.

Note: \geq makes sense because we are comparing real numbers. f has a relative maximum at $\vec{x_o}$ if there is a neighborhood Naround $\vec{x_o}$ such that $f(\vec{x_o}) \geq f(\vec{x})$ for all \vec{x} in N.



・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらぐ

<u>Theorem</u>: Let $\vec{x_o}$ be an **interior** point of D. If f is differentiable at $\vec{x_o}$ and f has a relative maximum or minimum at $\vec{x_o}$, then $f'(\vec{x_o}) = \nabla(\vec{x_o}) = \vec{0}$. <u>Proof</u>: Suppose f has a relative maximum at $\vec{x_o}$. Let \vec{u} be any unit vector in \mathbb{R}^n .

Then
$$\frac{\partial f}{\partial \vec{u}} = \lim_{t \to 0} \frac{f(\vec{x_0} + t\vec{u}) - f(\vec{x_0})}{t}$$

(a) Take
$$\lim_{t\to 0^+} : \frac{-}{+} \le 0$$

thus $\frac{\partial f}{\partial \vec{u}} = 0$ for all \vec{u}
(b) Take $\lim_{t\to 0^-} : \frac{-}{-} \ge 0$

Taking \vec{u} to be unit vectors gives $\nabla f(\vec{x_0}) = 0$

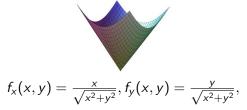
・ロト・西ト・山田・山田・山口・

Theorem: *f* differentiable at relative extrema implies gradient is 0.

The Theorem Has Its Limitations:

(1) The function can have an extreme value at a point where it is not differentiable.

Example: $f(x, y) = \sqrt{x^2 + y^2}$ has minimum at (0,0) but is not differentiable there.



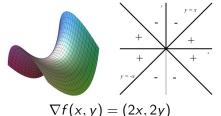
Example: $f(x,y) = \sqrt{x^2 + y^2}$ has minimum at (0,0) but is not differentiable there. Analogue in Calculus I: $f(x) = \sqrt{x^2} = |x|$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

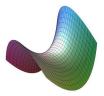
Theorem: *f* differentiable at relative extrema implies gradient is 0. The Theorem Has Its Limitations:

The Theorem Has Its Limitations:

(2) We can have $\nabla f(\vec{x_0}) = 0$ but no extreme point at $\vec{x_0}$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



There is a Maximum is one direction and a Minimum in another Saddle Point

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Quiz: Name a Famous Commercial Food Product That Exhibits a Saddle Point

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

<u>Definition</u>: A point $\vec{x_0}$ in the domain of f is a **Critical Point** of f if (a) $\nabla f(\vec{x_0}) = \vec{0}$ or (b) ∇f does not exist at $\vec{x_0}$.

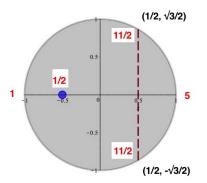
Extreme Values Can Occur at Critical Points or Points on the Boundary

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

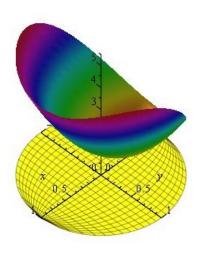
Example: Temperature Distribution on disk of radius 1 centered at origin is $T(x, y) = 2x^2 + 4y^2 + 2x + 1$. For Critical Points, examine $\nabla T = (4x + 2, 8y)$ $\nabla T = (0, 0)$ only at $x = -\frac{1}{2}, y = 0$ which does lie inside the disk. Note $T(-\frac{1}{2}, 0) = 2(\frac{1}{4}) + 4(0^2) + 2(-\frac{1}{2}) + 1 = \frac{1}{2}$, and T(0, 0) = 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Analyze Along Boundary: $x^2 + y^2 = 1$ so $y^2 = 1 - x^2$ and $T(x, y) = g(x) = 2x^2 + 4(1 - x^2) + 2x + 1 = -2x^2 + 2x + 5$ Thus g'(x) = -4x + 2, g''(x) = -4 so $x = \frac{1}{2}$ gives a maximum. $x = \frac{1}{2}$ gives $y^2 = 1 - \frac{1}{4} = \frac{3}{4}$ so $y = \pm \frac{\sqrt{3}}{2}$



red numbers are values of the function



◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

æ

Parametrize Boundary

$$x = \cos t, y = \sin t$$
 for $0 \le t \le 2\pi$

$$T(x, y) = 2x^{2} + 4y^{2} + 2x + 1$$

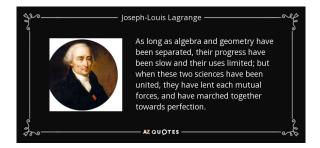
= 2 cos² t + 4 sin² t + 2 cos t + 1
= 2 cos² t + 2 sin² t + 2 sin² t + 2 cos t + 1
= 2 + 2 sin² t + 2 cos t + 1 = 2 sin² t + 2 cos t + 3
= H(t)

 $\begin{array}{l} H(0) = 2 \cdot 1 + 2 \cdot 0 + 3 = 5, H(\pi) = 2 \cdot 1 + 2 \cdot -1 + 3 = 1\\ \text{Now } H'(t) = 4 \sin t \cos t - 2 \sin t = 2 \sin t (2 \cos t - 1) \text{ so}\\ H'(t) = 0 \text{ at } \sin t = 0 \text{ or } \cos t = \frac{1}{2}\\ \text{The first condition gives } t = 0, t = \pi, \text{ the second occurs when}\\ t = \frac{\pi}{3}. \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Next Time:

Solving Constrained Optimization Problems Using Lagrange Multipliers



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●