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Extreme Values
Let D be a subset of Rn and f : D → R1 be a real-valued function

with x⃗o a point in D.
Definition: f has an absolute maximum at x⃗o if f (x⃗o) ≥ f (x⃗) for

all x⃗ in D.
Note: ≥ makes sense because we are comparing real numbers.
f has a relative maximum at x⃗o if there is a neighborhood N

around x⃗o such that f (x⃗o) ≥ f (x⃗) for all x⃗ in N.

Theorem: Let x⃗o be an interior point of D. If f is differentiable at
x⃗o and f has a relative maximum or minimum at x⃗o ,

then f ′(x⃗o) = ∇(x⃗o) = 0⃗.

Theorem: f differentiable at relative extrema implies
gradient is 0.

The Theorem Has Its Limitations:
(1) The function can have an extreme value at a point where

it is not differentiable.
(2) We can have ∇f (x⃗0) = 0 but no extreme point at x⃗0



There is a Maximum is one direction and a Minimum in another
Saddle Point



Definition: A point x⃗0 in the domain of f is a Critical Point of f if
(a) ∇f (x⃗0) = 0⃗

or
(b) ∇f does not exist at x⃗0.

Extreme Values Can Occur at Critical Points or Points on
the Boundary



Example: Temperature Distribution on disk of radius 1 centered at
origin is T (x , y) = 2x2 + 4y2 + 2x + 1.

For Critical Points, examine ∇T = (4x + 2, 8y)
∇T = (0, 0) only at x = −1

2 , y = 0
which does lie inside the disk.

Note T (−1
2 , 0) = 2(14) + 4(02) + 2(−1

2) + 1 = 1
2 , and T (0, 0) = 1.



Analyze Along Boundary:
x2 + y2 = 1 so y2 = 1− x2 and

T (x , y) = g(x) = 2x2 + 4(1− x2) + 2x + 1 = −2x2 + 2x + 5
Thus g ′(x) = −4x + 2, g ′′(x) = −4 so x = 1

2 gives a maximum.

x = 1
2 gives y2 = 1− 1

4 = 3
4 so y = ±

√
3
2

red numbers are values of the function





Parametrize Boundary
x = cos t, y = sin t for 0 ≤ t ≤ 2π

T (x , y) = 2x2 + 4y2 + 2x + 1

= 2 cos2 t + 4 sin2 t + 2 cos t + 1

= 2 cos2 t + 2 sin2 t + 2 sin2 t + 2 cos t + 1

= 2 + 2 sin2 t + 2 cos t + 1 = 2 sin2 t + 2 cos t + 3

= H(t)

H(0) = 2 · 1 + 2 · 0 + 3 = 5,H(π) = 2 · 1 + 2 · −1 + 3 = 1
Now H ′(t) = 4 sin t cos t − 2 sin t = 2 sin t(2 cos t − 1) so

H ′(t) = 0 at sin t = 0 or cos t = 1
2

The first condition gives t = 0, t = π, the second occurs when
t = π

3 .



Solving Constrained Optimization Problems
Using Lagrange Multipliers



Constrained Optimization:
Via Method of Lagrange Multipliers

T (x , y) = 2x2 + 4y2 + 2x + 1 on unit disk
D = {(x , y) : x2 + y2 ≤ 1}



Revisit Problem
Find Extreme Values of

T (x , y) = 2x2 + 4y2 + 2x + 1 on unit disk
D = {(x , y) : x2 + y2 ≤ 1}.

Findings: Maximum Value of 51
2 at (12 ,±

√
3
2 )

Minimum Value of 1
2 at (−1

2 , 0)
Lagrange Multiplier Method

Joseph-Louis Lagrange (1736 – 1813)
(Actually Used by Euler 40 years before Lagrange)



Find Extreme Values of
T (x , y) = 2x2 + 4y2 + 2x + 1 on unit disk

D = {(x , y) : x2 + y2 ≤ 1}.

Let F (x , y , λ) = 2x2 + 4y2 + 2x + 1 + λ(x2 + y2 − 1)
Fx = 4x + 2 + 2λx (1) 4x + 2 + 2xλ = 0

Fy = 8y + 2λy ∇F = 0⃗ implies (2) 8y + 2yλ = 0
Fλ = x2 + y2 − 1 (3) x2 + y2 = 1

Now (2) gives 2y(4 + λ) = 0 so y = 0 or λ = −4
Then y = 0 makes (3) x2 + 0 = 1 yielding x = ±1

This gives two points: (1,0) and (-1,0)
Now λ = −4 gives (1) 4x + 2− 8x = 0 =⇒ 4x = 2 =⇒ x = 1

2

and then (3) yields 1
4 + y2 = 1 =⇒ y2 = 3

4 =⇒ y = ±
√
3
2



Lagrange’s Idea



Maple Examples



Look at a More General Problem
Maximize f(x,y) [Objective Function]
Subject to g(x,y) = C [Constraint]
Examine Level Curves of f (f (x , y) = k

Find intersection of constraint curve with level curve that has
largest k.

This appears to occur at a point where the two curves are tangent
to each other;

that is, gradient vectors point in the same direction.

Hence f ′(x⃗0) = λg ′(x⃗0) for some λ

so that f ′(x⃗0)− λg ′(x⃗0) = 0⃗



Forming the function F (x , y , λ) = f (x , y)− λ[g(x , y)− C ] and
look for critical points of F

∇F = 0⃗ where:
Fx : fx = λgx
Fy : fy = λgy

Fλ : g(x , y) = C



Example: Find Extreme Values of f (x , y , z) = x + y + z
subject to

x2 + y2 = 2 and
x + z = 1

Let F (x , y , z , λ, µ) = x + y + z + λ(x2 + y2 − 2) + µ(x + z − 1)

Then

Fx = 0 1 + 2λx + µ = 0 (1)
Fy = 0 1 + 2λy = 0 (2)
Fz = 0 1 + µ = 0 (3)
Fλ = 0 x2 + y2 = 2 (4)
Fµ = 0 x + z = 1 (5)

(3) µ = −1

(1) 1 + 2λx − 1 = 0 =⇒ 2λx = 0
(2) 2λy = −1
Since 2λy = −1, we know λ ̸= 0 so x = 0

(4) 02 + y2 = 2 =⇒ y = ±
√
2

(5) 0 + z = 1 =⇒ z = 1



x = 0, y = ±
√
2, z = 1

Thus, there are two critical points
(x , y , z) = (0,

√
2, 1) and (0,−

√
2, 1)

f (0,
√
2, 1) = 1 +

√
2 is a Relative Maximum

f (0,−
√
2, 1) = 1−

√
2 is a Relative Minimum

Note: x2 + y2 = 2 =⇒ −
√
2 ≤ x ≤

√
2 and −

√
2 ≤ y ≤

√
2

So x , y are bounded.
Since x + z = 1 and x is bounded, it follows that z is bounded.



Theorem
The Lagrange multiplier measures the rate of change of the
extreme values of the objective function with respect to changes in
the constraint constants.

Let’s see why this is true. For simplicity, we’ll examine functions of
two variables. We set F (x1, x2, λ) = f (x1, x2)− λ(g(x1, x2)− C )
and find values x∗1 , x

∗
2 , λ

∗ so that ∇F (x∗1 , x
∗
2 , λ

∗) = 0. Thus

fx1(x
∗
1 , x

∗
2 ) = λ∗gx1(x

∗
1 , x

∗
2 )

fx2(x
∗
1 , x

∗
2 ) = λ∗gx2(x

∗
1 , x

∗
2 )

g(x∗1 , x
∗
2 ) = C

and a maximum value M = f (x∗1 , x
∗
2 ).

Observe that g(x∗1 , x
∗
2 )− C = 0.



Now x∗ = (x∗1 , x
∗
2 ), λ

∗, and M are all functions of C .
The derivative

df

dC
f (x∗(C )) (1)

represents the rate of change in the optimal output with respect to
a change of the constant C .
Corresponding to x∗(C ) there is a value λ = λ∗(C ) giving a
solution to the Lagrange multiplier problem;that is,

∇f (x∗(C )) = λ∗(C )∇g(x∗(C )) and

g(x∗(C )) = C
(2)



We will show that

λ∗(C ) =
d

dC
f (x∗(C )) (3)

which asserts that the Lagrange multiplier is the rate of change in
the optimal output resulting from the change of the constant C .
We present a derivation of this claim for two variables. The general
case in n variables is the same, just replacing the sum of two terms
by the sum of n terms.

d

dC
f (x∗(C )) =

∂f (x∗(C ))

∂x1

dx∗1
dC

(C ) +
∂f (x∗(C ))

∂x2

dx∗2
dC

(C )

Because our values solve the Lagrange multiplier problem, we have

∂f

∂xi
(x∗(C )) = λ∗ ∂g

∂xi
(x∗(C )), all i .



Because our values solve the Lagrange multiplier problem, we have

∂f

∂xi
(x∗(C )) = λ∗ ∂g

∂xi
(x∗(C )), all i .

Substituting this result into the previous equation, we have
d
dC f (x

∗(C ))

=

[
λ∗(C )

∂g

∂x1
(x∗(C ))

]
dx∗1
dC

(C ) +

[
λ∗(C )

∂g

∂x2
(x∗(C ))

]
dx∗2
dC

(C )

= λ∗(C )

[
∂g

∂x1
(x∗(C ))

dx∗1
dC

(C ) +
∂g

∂x2
(x∗(C ))

dx∗2
dC

(C )

]
(4)

Since C = g(x∗(C )) for all C , differentiation with respect to C
gives

1 =
d

dC
g(x∗(C )) =

∂g

∂x1
(x∗(C ))

dx∗1
dC

(C ) +
∂g

∂x2
(x∗(C ))

dx∗2
dC

(C ).

(5)



1 =
d

dC
g(x∗(C )) =

∂g

∂x1
(x∗(C ))

dx∗1
dC

(C ) +
∂g

∂x2
(x∗(C ))

dx∗2
dC

(C ).

(6)
Replacing the right hand side by 1 in Equation (5.3) gives

d

dC
f (x∗(C )) = λ∗(C ) [1] = λ∗(C )

which is our claim. In the economics perspective, if f is the profit
function of the inputs, and C is the budget constraint, then the
derivative is the rate of change of the profit from the change in the
value of the inputs; the Lagrange multiplier is what economists call
the marginal profit of money . They also use the term shadow price
for the value of λ in the optimal solution of maximizing revenue
subject to a budget constraint. The shadow price measures the
money gained by loosening the constraint by a dollar or the loss of
revenue if we tighten the constraint by a dollar.



Suppose Gradient of Our Function is 0 at Some Point.
How Do We Tell Whether It is:

Local Minimum.
Local Maximum.
Point of Inflection

Analogy From Calculus 1: Derivative is 0.
Is It Maximum, Minimum, Point of Inflection?

Second Derivative Test


