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Announcements
Exam 2: Tonight at 7 PM
WNS 100: Last Name L – Z
WNS 101: Last Name A – K



Lagrange Multiplier
Problem: Maximize T (x , y) = 2x2 + 4y2 + 2x + 1

subject to x2 + y2 ≤ 1
Contours for T(x,y)
Constraint Boundary



Look at a More General Problem
Maximize f(xty) [Objective Function]
Subject to g(x,y) = C [Constraint]
Examine Level Curves of f (f (x , y) = k

Find intersection of constraint curve with level curve that has
largest k.

This appears to occur at a point where the two curves are tangent
to each other;

that is, gradient vectors point in the same direction.



Theorem
The Lagrange multiplier measures the rate of change of the
extreme values of the objective function with respect to changes in
the constraint constants.

Let’s see why this is true. For simplicity, we’ll examine functions of
two variables. We set F (x1, x2, λ) = f (x1, x2)− λ(g(x1, x2)− C )
and find values x∗1 , x

∗
2 , λ

∗ so that ∇F (x∗1 , x
∗
2 , λ

∗) = 0. Thus

fx1(x
∗
1 , x

∗
2 ) = λ∗gx1(x

∗
1 , x

∗
2 )

fx2(x
∗
1 , x

∗
2 ) = λ∗gx2(x

∗
1 , x

∗
2 )

g(x∗1 , x
∗
2 ) = C

and a maximum value M = f (x∗1 , x
∗
2 ).

Observe that g(x∗1 , x
∗
2 )− C = 0.



Now x∗ = (x∗1 , x
∗
2 ), λ

∗, and M are all functions of C .
The derivative

df

dC
f (x∗(C )) (1)

represents the rate of change in the optimal output with respect to
a change of the constant C .
Corresponding to x∗(C ) there is a value λ = λ∗(C ) giving a
solution to the Lagrange multiplier problem;that is,

∇f (x∗(C )) = λ∗(C )∇g(x∗(C )) and

g(x∗(C )) = C
(2)



We will show that

λ∗(C ) =
d

dC
f (x∗(C )) (3)

which asserts that the Lagrange multiplier is the rate of change in
the optimal output resulting from the change of the constant C .
We present a derivation of this claim for two variables. The general
case in n variables is the same, just replacing the sum of two terms
by the sum of n terms.

d

dC
f (x∗(C )) =

∂f (x∗(C ))

∂x1

dx∗1
dC

(C ) +
∂f (x∗(C ))

∂x2

dx∗2
dC

(C )

Because our values solve the Lagrange multiplier problem, we have

∂f

∂xi
(x∗(C )) = λ∗ ∂g

∂xi
(x∗(C )), all i .



Because our values solve the Lagrange multiplier problem, we have

∂f

∂xi
(x∗(C )) = λ∗ ∂g

∂xi
(x∗(C )), all i .

Substituting this result into the previous equation, we have
d
dC f (x

∗(C ))

=

[
λ∗(C )

∂g

∂x1
(x∗(C ))

]
dx∗1
dC

(C ) +

[
λ∗(C )

∂g

∂x2
(x∗(C ))

]
dx∗2
dC

(C )

= λ∗(C )

[
∂g

∂x1
(x∗(C ))

dx∗1
dC

(C ) +
∂g

∂x2
(x∗(C ))

dx∗2
dC

(C )

]
(4)

Since C = g(x∗(C )) for all C , differentiation with respect to C
gives

1 =
d

dC
g(x∗(C )) =

∂g

∂x1
(x∗(C ))

dx∗1
dC

(C ) +
∂g

∂x2
(x∗(C ))

dx∗2
dC

(C ).

(5)



1 =
d

dC
g(x∗(C )) =

∂g

∂x1
(x∗(C ))

dx∗1
dC

(C ) +
∂g

∂x2
(x∗(C ))

dx∗2
dC

(C ).

(6)
Replacing the right hand side by 1 in Equation (5.3) gives

d

dC
f (x∗(C )) = λ∗(C ) [1] = λ∗(C )

which is our claim. In the economics perspective, if f is the profit
function of the inputs, and C is the budget constraint, then the
derivative is the rate of change of the profit from the change in the
value of the inputs; the Lagrange multiplier is what economists call
the marginal profit of money . They also use the term shadow price
for the value of λ in the optimal solution of maximizing revenue
subject to a budget constraint. The shadow price measures the
money gained by loosening the constraint by a dollar or the loss of
revenue if we tighten the constraint by a dollar.



Example: Maximize production function f (x , y) = x2/3y1/3 subject
to budget constraint w = g(x , y) = px + qy

Form
F (x , y , λ) = f (x , y)−λ(g(x , y)−w) = x2/3y1/3−λ(px + qy −w)

Fx(x , y , λ) = 0 2
3x

−1/3y1/3 − λp = 0

Fy (x , y , λ) = 0 1
3x

2/3y−2/3 − λq = 0
Fλ(x , y , λ) = 0 px + qy = w

2
3x

−1/3y1/3 = λp
1
3x

2/3y−2/3 = λq
px + qy = w



(1): 2
3x

−1/3y1/3 = λp

(2): 1
3x

2/3y−2/3 = λq
(3): px + qy = w

Multiply (1) by 3 and divide by p:
2
p x

−1/3y1/3 = 3λ
Multiply (2) by 3 and divide by q:

1
q x

2/3y−2/3 = 3λ

Thus 2
p x

−1/3y1/3 = 1
q x

2/3y−2/3 which simplifies to

qy = 1
2px

which makes (3): w = px + qy = px + 1
2px = 3

2px
Hence px∗ = 2

3w and qy∗ = 1
3w so

x∗ = 2w
3p and y∗ = w

3q



To indicate the dependence on these optiimizing values on w , we
write x∗(w) and y∗(w).

From (1) , we have λ∗(w) = 2
3(x

∗)−1/3(y∗)1/3

But x∗ = 2w
3p and y∗ = w

3q so

λ∗(w) = 2
3p

(
2w
3p

)−1/3 (
w
3q

)1/3
= 22/3

3

(
1

p2q

)1/3

On the other hand, maximum value of the objective function f is

f (x∗(w), y∗(w)) = (x∗)2/3(y∗)1/3

=

(
2w

3p

)2/3( w

3q

)1/3

=
22/3

3

(
1

p2q

)1/3

w = λ∗(w)w



f (x∗(w), y∗(w)) = λ∗(w)w

so

d

dw
f (x∗(w), y∗(w)) = λ∗(w)

Thus, the increase in the production at the point of maximization
with respect to the increase in the value of the inputs equals to the

Lagrange multiplier, i.e., the value of λ∗ represents the rate of
change of the optimum value of f as the value of the inputs

increases.



Suppose Gradient of Our Function is 0 at Some Point.
How Do We Tell Whether It is:

Local Minimum.
Local Maximum.
Point of Inflection

Analogy From Calculus 1: Derivative is 0.
Is It Maximum, Minimum, Point of Inflection?

Second Derivative Test



Today:
Second Derivative Criteria
Classic Case: f : R1 → R1

with f ′(x0) = 0

f ′′(x0) > 0 f ′′(x0) < 0 f ′′ changes sign at x0



What Can We Conclude if f ′′(x0) = 0?

f (x) = x4 f (x) = −x4

f ′(x) = 4x3 f ′(x) = −4x3

f ′′(x) = 12x2 f ′′(x) = −12x2

f ′′(0) = 0 f ′′(0) = 0



Second Derivative Test
For Real-Valued Functions of Several Variables

Involves Second Order Partial Derivatives



Definition: If f is a twice differentiable function from Rn to R1,
then the Hessian Matrix is the n × n matrix of second order
partial derivatives of f

For example, if f : R3 → R1 so w = f (x , y , z), then the Hessian H
for f is

H(f ) =

fxx fxy fxz
fyx fyy fyz
fzx fzy fzz


Note that if f is twice continuously differentiable, then the mixed
partials are equal: fxy = fyx , fxz = fzx , fyz = fzy so the Hessian
matrix is symmetric.



Otto Ludwig Hesse
April 22, 1811 – August 4, 1874



The Second Derivative Test
for real-valued functions of several variables
replaces the condition f ′′(c) being positive

with the Hessian matrix being positive definite.
It similarly uses the negative definite character of the Hessian

matrix in place of the negativity of the second derivative.


