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Review Polar Coordinates



Proof: See Notes for Monday’s Class



Today:
Second Derivative Criteria
Classic Case: f : R1 → R1

with f ′(x0) = 0

f ′′(x0) > 0 f ′′(x0) < 0 f ′′ changes sign at x0



What Can We Conclude if f ′′(x0) = 0?

f (x) = x4 f (x) = −x4

f ′(x) = 4x3 f ′(x) = −4x3

f ′′(x) = 12x2 f ′′(x) = −12x2

f ′′(0) = 0 f ′′(0) = 0



Second Derivative Test
For Real-Valued Functions of Several Variables

Involves Second Order Partial Derivatives



Definition: If f is a twice differentiable function from Rn to R1,
then the Hessian Matrix is the n × n matrix of second order
partial derivatives of f

For example, if f : R3 → R1 so w = f (x , y , z), then the Hessian H
for f is

H(f ) =

fxx fxy fxz
fyx fyy fyz
fzx fzy fzz


Note that if f is twice continuously differentiable, then the mixed
partials are equal: fxy = fyx , fxz = fzx , fyz = fzy so the Hessian
matrix is symmetric.
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The Second Derivative Test
for real-valued functions of several variables
replaces the condition f ′′(c) being positive

with the Hessian matrix being positive definite.
It similarly uses the negative definite character of the Hessian

matrix in place of the negativity of the second derivative.



Definition A Positive Definite Matrix is an n by n symmetric
matrix A such that x · (Ax) > 0 for all nonzero vectors x in Rn.

You will often see the equivalent condition xTAx > 0 for x ̸= 0
where xT is the transpose of x.

If the strict inequality sign > is replaced by the weaker ≥, then the
matrix is called positive semi-definite.

We define negative definite and negative semi-definite in an
analogous manner, using < and ≤, respectively.



Example: Let A =

(
10 4
4 2

)
.

With x =

(
x
y

)
, we have

(x , y) · (10x + 4y , 4x + 2y) = 10x2 + 4xy + 4xy + 2y2

= 10x2 + 8xy + 2y2

= (9x2 + 6xy + y2) + (x2 + 2xy + y2)

= (3x + y)2 + (x + y)2

which is the sum of non-negative numbers and hence always
greater than or equal to 0, but is positive unless both x and y are
0. Hence A is a positive definite matrix.



A Matrix Which is Not Positive Definite

A =

(
2 4
4 5

)
With x = −2, y = 1, we have x · (Ax) = −3 so A is not positive

definite.
With x = 2, y = 1, we have x · (Ax) = 29 so A is not negative

definite.



An alternative, equivalent definition of a symmetric matrix being
positive definite is that all its eigenvalues are positive.

Theorem
All real eigenvalues of a positive definite matrix are positive.

Proof: Let A be an n × n be a positive definite matrix with real
eigenvalue λ.

If λ = 0, then there is a nonzero vector x such that Ax = 0x = 0.
But then, x · (Ax) = 0 so A would not be positive definite.
If λ < 0, then there is a nonzero vector x such that Ax = λx in

which case

x · (Ax) = x · (λx) = λ|x|2 < 0

so again A is not positive definite.
Not only is the converse of this theorem true (all eigenvalues
positive implies positive definiteness), but the eigenvalues of a

symmetric matrix are always real.



Theorem
If all the eigenvalues of a symmetric matrix A are positive, then A
is positive definite.

Proof : We make use of a result from linear algebra: A symmetric
matrix is diagonalizable by an orthogonal matrix; that is, there is
an orthogonal matrix Q such that QT = Q−1 with QTAQ = D,
where D is a diagonal matrix whose main diagonal entries are the

eigenvalues of A:

D =


λ1 0 0 ... 0
0 λ2 0 ... 0
0 0 λ3 ... 0
...
0 0 0 ... λn





Let x be any nonzero vector and set y = QTx so that yT = xTQ.
Then

xTAx = xT (QDQT )x = (xT (Q)D(QTxT ) = yTDy

but

yTDy = λ1y
2
1 + λ2y

2
2 + ...+ λny

2
n =

n∑
i=1

λiy
2
i

where yT = (y1, y2, ..., yn). Since x is a nonzero vector and Q is
invertible, at least one yi is nonzero. Hence

xTAx = λ1y
2
1 + λ2y

2
2 + ...+ λny

2
n =

n∑
i=1

λiy
2
i

is the sum of non-negative terms, at least one of which is positive,
so it is positive. Thus A is positive definite. .



Now, we’ll take a look at the occurrence of positive definite
matrices in testing critical points for local extreme properties.
The setting is a real -valued function f : Rn → R1 which has
continuous partial derivatives of third order in an open set U

containing a vector x0.
The Second-Order Taylor Theorem asserts that

f (x0 + h) = f (x0) +∇f (x0) · h+
1

2
hTH(x0)h+ R2(x0,h)

and

lim
h→0

R2(x0,h)

|h|
= 0

(See Text for Proof)



Theorem
Second Derivative Test for Local Extrema.
Suppose f : Rn → R1 has continuous third order partial derivatives
on a neighborhood of x0 which is a critical point of f .

IF the Hessian H evaluated at x0 is positive definite, then f has a
relative minimum at x0.

If the Hessian is negative definite, then there is a relative
maximum at the critical point.



Here is the idea of the proof: Since x0 is a critical point,
∇f (x0) = 0 and by Taylor’s Theorem

f (x0 + h) = f (x0) +
1

2
hTH(x0)h+ R2(x0,h)

where the remainder term is negligible when h is very small. Thus

f (x0 + h) ≈ f (x0) +
1

2
hTH(x0)h.

If the Hessian is positive definite, then the second term is positive
for h ̸= 0 so f (x0 + h) > f (x0) when h is sufficiently small,

making x0 the location of a relative minimum.
We will leave a formal proof and dealing with the negative definite

case for the exercises.
I



Example: Our Temperature Function
T (x , y) = 2x2 + 4y2 + 2x + 1

Here Tx(x , y) = 4x + 2 and Ty (x , y) = 8y .
Thus, the Hessian Matrix H is

H =

(
4 0
0 8

)
whose eigenvalues are 4 and 8.

Both are positive so T has a minimum wherever the gradient is 0;
that is, at (-1/2,0).



Example: T (x , y) = x2 − y2

∇T (x , y) = (2x ,−2y) so ∇T = 0⃗ at (0, 0)

Thus, the Hessian Matrix H is

H =

(
2 0
0 −2

)
whose eigenvalues are 2 and -2.

Thus it is neither positive definite nor negative definite.

x · Hx can be positive (x = (1, 0)) or negative (x = (0,1)) so there
is a saddle point at any point where ∇T is 0⃗.



Example: f (x , y) = x3 − y3 − 2xy

Here ∇f = (3x2 − 2y ,−3y2 − 2x)

∇f = 0⃗ when
3x2 = 2y and 3y2 = −2x

The first equation gives 9x4 = 4y2 and the second yields y2 = −2
3x

Thus 9x4 = 4(−2
3x) = −8

3x
so 9x4 = −8

3x or 27x4 + 8x = 0; Hence x(27x3 + 8) = 0
This gives two solutions: x = 0, y = 0 and x = −2

3 , y = 2
3

Two Critical Points: (0,0) and (-2/3, 2/3)



Example: f (x , y) = x3 − y3 − 2xy
∇f = (3x2 − 2y ,−3y2 − 2x)

Two Critical Points: (0,0) and (-2/3, 2/3)
The Hessian Matrix is

H =

(
6x −2
−2 −6y

)
At (-2/3,2/3), Hessian is

H =

(
−4 −2
−2 −4

)
whose eigenvalues are -2 and -6, both negative.
Thus there is a relative maximum at (-2/3,2/3),/



Example: f (x , y) = x3 − y3 − 2xy
∇f = (3x2 − 2y ,−3y2 − 2x)

Two Critical Points: (0,0) and (-2/3, 2/3)
The Hessian Matrix is

H =

(
6x −2
−2 −6y

)
At (0,0), Hessian is

H =

(
0 −2
−2 0

)
whose eigenvalues are -2 and +2.

. Thus there is a saddle point at (0,0),



More About Saddle Points
”Relative Maximum in One Direction, but Relative Minimum in

Another Direction”
How Do We Find These Directions?

Look at the Eigenvectors!
Take our example f (x , y) = x3 − y3 − 2xy at the origin.

The eigenvalue -2 has eigenvector of the form (1,1)
Consider f (x , x) = x3 − x3 − 2xx = −2x2 has relative maximum at

x = 0
The eigenvalue +2 has eigenvector of the form (1,-1).

Consider f (x ,−x) = x3 + x3 + 2xx = 2x3 + 2x2 = 2x2(1 + x) has
relative minimum at x = 0



Graph of f (x , y) = x3 − y3 − 2xy



Next Time

Alternative Coordinate Systems
for 3-Space

Rectangular
Cylindrical
Spherical


