Notes on Assignment 19
Assignments 20 and 21
Curvilinear Coordinates



Announcements
Review Basic Theorems About Integration from Calculus |



Theorem

Second Derivative Test for Local Extrema.

Suppose f : R" — R! has continuous third order partial derivatives
on a neighborhood of xg which is a critical point of f .

IF the Hessian H evaluated at xq is positive definite, then f has a
relative minimum at Xxg.

If the Hessian is negative definite, then there is a relative
maximum at the critical point.



Example: Our Temperature Function
T(x,y) =2x%> +4y? +2x +1
Here T, (x,y) =4x+2and T,(x,y) = 8y.
Thus, the Hessian Matrix H is

4 0
%= (o o)
whose eigenvalues are 4 and 8.

Both are positive so T has a minimum wherever the gradient is 0;
that is, at (-1/2,0).



Example: T(x,y) = x? — y?
VT(x,y)=(2x,—2y) so VT =0 at (0,0)

Thus, the Hessian Matrix H is

(5%

whose eigenvalues are 2 and -2.
Thus it is neither positive definite nor negative definite.

x - Hx can be positive (x = (1,0)) or negative (x = (0,1)) so there
is a saddle point at any point where VT is 0.



Example: f(x,y) = x3 — y3 — 2xy
Here Vf = (3x% — 2y, —3y? — 2x)

Vf = 0 when
3x%2 =2y and 3y? = —2x

The first equation gives 9x* = 4y? and the second yields y? =

Thus 9x* = 4(—3x) = —5x

so 9x* = —8x or 27x* + 8x = 0 Hence x(27x3 +
This gives two solutions: x =0,y =0 and x = —%

Two Critical Points: (0,0) and (-2/3, 2/3)

8) =
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Example: f(x,y) = x3 — y3 —2xy

VFf = (3x% — 2y, —3y? — 2x)
Two Critical Points: (0,0) and (-2/3, 2/3)
The Hessian Matrix is

6x —2
H= <—2 —6y>
At (-2/3,2/3), Hessian is
—4 =2
#= (2 )
whose eigenvalues are -2 and -6, both negative.
Thus there is a relative maximum at (-2/3,2/3),/



Example: f(x,y) = x3 — y3 —2xy

VFf = (3x% — 2y, —3y? — 2x)
Two Critical Points: (0,0) and (-2/3, 2/3)
The Hessian Matrix is

6x 2
"= <—2 —6y>
At (0,0), Hessian is
0 -2
(%)
whose eigenvalues are -2 and +2.
. Thus there is a saddle point at (0,0),



More About Saddle Points
" Relative Maximum in One Direction, but Relative Minimum in
Another Direction”
How Do We Find These Directions?
Look at the Eigenvectors!
Take our example f(x,y) = x3 — y3 — 2xy at the origin.

The eigenvalue -2 has eigenvector of the form (1,1)
Consider f(x, x) = x3 — x3 — 2xx = —2x? has relative maximum at
x=0
The eigenvalue +2 has eigenvector of the form (1,-1).
Consider f(x, —x) = x3 + x> + 2xx = 2x3 + 2x% = 2x?(1 + x) has
relative minimum at x =0



Graph of f(x,y) = x3 — y3 —2xy




Next Time

Alternative Coordinate Systems
for 3-Space

Rectangular
Cylindrical
Spherical



Today:
Curvilinear Coordinates
Coordinate Systems in Plane and Space

Plane
P | P,

Cartesian Polar
Newton(1671) [Not published until after death]
Jacob Bernoulli (1691)
In Polar Coordinates, Circles and Lines Through Origin Have
Simple Equations:
Circle: r=14
Line: # =7/6



Relationship Between Polar and Cartesian

Py
P (,0) or (x,»)
4
x=rcos @
y=rsin0
0 X




Linear Algebra Perspective
p r\ _(rcosf\ (x)for0<r<oo
0) \rsing) \y) 0<6<2r

6 :
L,. P: U2 — R L

Example: P sends this line segment S to circle of radius 2 with
center at origin.

[r,0] =[2,t],0<t<2r



Example: 0 = t,r =sint =sinf

(1,m/2)

‘ r=sint 0=t
0 0 0
/6 1/2 7w /6
/4| \2/2 /4
/2 1 /2

Then x = rcosf =sinflcos and y = rsinf = sinfsinf

So x% = sin? A cos? 6, y? = sin® fsin? 9

and then x? + y2 = sin? f(cos? § + sin20) = sin?0 x 1 =sinf = y
Thus x? + y2 — y = 0. Complete the square in y:
Cryl-yti=; = +(y-3) =1
which is the equation of a circle with center at (0,1/2) and radius
1/2.



Xyl —yt+i=73 = 2+(y—3)P=

which is the equation of a circle
with center at (0,1/2) and radius 1/2.

The image is the right half of the circle:
(1, 7/2) :

0, 1/2)




Think of P as a function from R? to R2. Then

; %(rcos@) @r(rcosﬁ)
= <2‘r(rsin9) 8% >

- () — e (5 4

Previous Example

g(t) = [sint, t]
so g'(t) = [cost,1]
At t =m/6,g'(7/6) = [vV3/2,1]
g:R' 5 U?and P: U2 - R?

(Pog): R - R?

(37 i) (i

3/2 —1/4 3/2
Evaluate at 7/6: < 1/2 ﬁ/4> < 1 >

(v37)



Coordinate Systems in 3-Space
Cylindrical Coordinates: (r,0, z).

X = rcosf
y =rsind
z=2z



Coordinate Systems in 3-Space
Spherical Coordinates: (p,0,¢) = (r,0,¢)

r = distance between origin and point
f = project down to xy-plane
¢ = rotation down from vertical axis
r = distance between origin and point x = rsin ¢ cos6
0 = project down to xy-plane. y = rsin¢sinf

Z=1rcos¢

¢ = rotation down from vertical axis
Some authors use p instead of r.



Converting from Spherical To Cartesian

o rsin ¢

rcos ¢
5

¢
¥

/0

rsin ¢
y

V4
COSp = — =—> Z=1rcos¢
r

cosf = = x = rsin¢cosf

rsin ¢

sinf =

. = y =rsingsinf
rsin ¢



r rsin ¢ cosf
S:|l¢| = | rsingsing
0 rcos ¢

r = Constant ¢ = Constant 0 = Constant
Sphere Cone Plane



Jacobian Matrices
cosf —rsinf
sinff  rcos@

cosf —rsin@ O
sinf rcosf O
0 0 1

singpcosf rcospcosf —rsingsinf
singsind  rcos¢gsinf  rsin¢cosf
cos ¢ —rsin¢ 0



