

Notes on Assignment 19 Assignments 20 and 21 Curvilinear Coordinates

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Announcements Review Basic Theorems About Integration from Calculus I

Theorem

Second Derivative Test for Local Extrema.

Suppose $f : \mathbb{R}^n \to \mathbb{R}^1$ has continuous third order partial derivatives on a neighborhood of \mathbf{x}_0 which is a critical point of f.

IF the Hessian \mathcal{H} evaluated at x_0 is positive definite, then f has a relative minimum at x_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

If the Hessian is negative definite, then there is a relative maximum at the critical point.

Example: Our Temperature Function $T(x, y) = 2x^2 + 4y^2 + 2x + 1$ Here $T_x(x, y) = 4x + 2$ and $T_y(x, y) = 8y$. Thus, the Hessian Matrix \mathcal{H} is

$$\mathcal{H} = \begin{pmatrix} 4 & 0 \\ 0 & 8 \end{pmatrix}$$

whose eigenvalues are 4 and 8.

Both are positive so T has a minimum wherever the gradient is 0; that is, at (-1/2,0).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

$$\frac{\text{Example: } T(x,y) = x^2 - y^2}{\nabla T(x,y) = (2x, -2y) \text{ so } \nabla T = \vec{0} \text{ at } (0,0)}$$

Thus, the Hessian Matrix $\mathcal H$ is

$$\mathcal{H}=egin{pmatrix} 2 & 0 \ 0 & -2 \end{pmatrix}$$

whose eigenvalues are 2 and -2. Thus it is neither positive definite nor negative definite.

 $\mathbf{x} \cdot \mathcal{H}\mathbf{x}$ can be positive ($\mathbf{x} = (1,0)$) or negative ($\mathbf{x} = (0,1)$) so there is a **saddle point** at any point where ∇T is $\vec{0}$.

- ロ ト - 4 回 ト - 4 □

Example:
$$f(x, y) = x^3 - y^3 - 2xy$$

Here $\nabla f = (3x^2 - 2y, -3y^2 - 2x)$
 $\nabla f = \vec{0}$ when
 $3x^2 = 2y$ and $3y^2 = -2x$

The first equation gives $9x^4 = 4y^2$ and the second yields $y^2 = -\frac{2}{3}x$ Thus $9x^4 = 4(-\frac{2}{3}x) = -\frac{8}{3}x$ so $9x^4 = -\frac{8}{3}x$ or $27x^4 + 8x = 0$; Hence $x(27x^3 + 8) = 0$ This gives two solutions: x = 0, y = 0 and $x = -\frac{2}{3}, y = \frac{2}{3}$

Two Critical Points: (0,0) and (-2/3, 2/3)

Example:
$$f(x, y) = x^3 - y^3 - 2xy$$

 $\overline{\nabla f} = (3x^2 - 2y, -3y^2 - 2x)$
Two Critical Points: (0,0) and (-2/3, 2/3)
The Hessian Matrix is

$$\mathcal{H} = \begin{pmatrix} 6x & -2 \\ -2 & -6y \end{pmatrix}$$

At (-2/3, 2/3), Hessian is

$$\mathcal{H} = egin{pmatrix} -4 & -2 \ -2 & -4 \end{pmatrix}$$

whose eigenvalues are -2 and -6, both negative. Thus there is a relative maximum at (-2/3,2/3),/

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

Example:
$$f(x, y) = x^3 - y^3 - 2xy$$

 $\overline{\nabla f} = (3x^2 - 2y, -3y^2 - 2x)$
Two Critical Points: (0,0) and (-2/3, 2/3)
The Hessian Matrix is

$$\mathcal{H} = \begin{pmatrix} 6x & -2 \\ -2 & -6y \end{pmatrix}$$

At (0,0), Hessian is

$$\mathcal{H} = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix}$$

whose eigenvalues are -2 and +2. . Thus there is a saddle point at (0,0),

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

More About Saddle Points "Relative Maximum in One Direction, but Relative Minimum in Another Direction" How Do We Find These Directions? Look at the Eigenvectors! Take our example $f(x, y) = x^3 - y^3 - 2xy$ at the origin. The eigenvalue -2 has eigenvector of the form (1,1)Consider $f(x,x) = x^3 - x^3 - 2xx = -2x^2$ has relative maximum at $\mathbf{x} = \mathbf{0}$ The eigenvalue +2 has eigenvector of the form (1,-1).

Consider $f(x, -x) = x^3 + x^3 + 2xx = 2x^3 + 2x^2 = 2x^2(1+x)$ has relative minimum at x = 0

Graph of
$$f(x, y) = x^3 - y^3 - 2xy$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Next Time

Alternative Coordinate Systems for 3-Space

Rectangular Cylindrical Spherical

Relationship Between Polar and Cartesian

Linear Algebra Perspective

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Then $x = r \cos \theta = \sin \theta \cos \theta$ and $y = r \sin \theta = \sin \theta \sin \theta$ So $x^2 = \sin^2 \theta \cos^2 \theta$, $y^2 = \sin^2 \theta \sin^2 \theta$ and then $x^2 + y^2 = \sin^2 \theta (\cos^2 \theta + \sin^2 \theta) = \sin^2 \theta \times 1 = \sin^2 \theta = y$ Thus $x^2 + y^2 - y = 0$. Complete the square in y: $x^2 + y^2 - y + \frac{1}{4} = \frac{1}{4} \implies x^2 + (y - \frac{1}{2})^2 = \frac{1}{4}$ which is the equation of a circle with center at (0,1/2) and radius 1/2.

$$\begin{aligned} x^2 + y^2 - y + \frac{1}{4} &= \frac{1}{4} \implies x^2 + (y - \frac{1}{2})^2 = \frac{1}{4} \\ \text{which is the equation of a circle} \\ \text{with center at (0,1/2) and radius 1/2.} \end{aligned}$$

The image is the right half of the circle:

◆□→ ◆圖→ ◆国→ ◆国→ 三国

Think of P as a function from \mathbb{R}^2 to \mathbb{R}^2 . Then

$$P' = \begin{pmatrix} \frac{\partial}{\partial r} (r \cos \theta) & \frac{\partial}{\partial \theta} (r \cos \theta) \\ \frac{\partial}{\partial r} (r \sin \theta) & \frac{\partial}{\partial \theta} (r \sin \theta) \end{pmatrix}$$

$$P' = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} \implies P'(\pi/6) = \begin{pmatrix} \sqrt{3}/2 & -1/4 \\ 1/2 & \sqrt{3}/4 \end{pmatrix}$$

$$\frac{Previous Example}{g(t) = [\sin t, t]}$$
so $g'(t) = [\cos t, 1]$
At $t = \pi/6, g'(\pi/6) = [\sqrt{3}/2, 1]$
 $g : \mathbb{R}^1 \to \mathbb{U}^2$ and $P : \mathbb{U}^2 \to \mathbb{R}^2$
 $(P \circ g) : \mathbb{R}^1 \to \mathbb{R}^2$
 $(P \circ g)' = P'(g) \cdot g'$
Evaluate at $\pi/6$: $\begin{pmatrix} \sqrt{3}/2 & -1/4 \\ 1/2 & \sqrt{3}/4 \end{pmatrix} \begin{pmatrix} \sqrt{3}/2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 \\ \sqrt{3}/2 \end{pmatrix}$

(日)、(型)、(E)、(E)、(E)、(O)へ(C)

Coordinate Systems in 3-Space Cylindrical Coordinates: (r, θ, z) .

 $x = r \cos \theta$ $y = r \sin \theta$ z = z

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Coordinate Systems in 3-Space Spherical Coordinates: $(\rho, \theta, \phi) = (r, \theta, \phi)$

 $\begin{array}{l} r = \mbox{distance between origin and point} \\ \theta = \mbox{project down to } xy\mbox{-plane} \\ \phi = \mbox{rotation down from vertical axis} \\ r = \mbox{distance between origin and point} \quad x = r \sin \phi \cos \theta \\ \theta = \mbox{project down to } xy\mbox{-plane.} \qquad y = r \sin \phi \sin \theta \\ \phi = \mbox{rotation down from vertical axis} \qquad z = r \cos \phi \\ & \mbox{Some authors use } \rho \mbox{ instead of } r. \end{array}$

Converting from Spherical To Cartesian

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 $\begin{array}{ll} r = {\rm Constant} & \phi = {\rm Constant} & \theta = {\rm Constant} \\ {\rm Sphere} & {\rm Cone} & {\rm Plane} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Jacobian Matrices

$$\begin{pmatrix} \cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta \end{pmatrix}$$

$$\begin{pmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \sin\phi\cos\theta & r\cos\phi\cos\theta & -r\sin\phi\sin\theta \\ \sin\phi\sin\theta & r\cos\phi\sin\theta & r\sin\phi\cos\theta \\ \cos\phi & -r\sin\phi & 0 \end{pmatrix}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで