
Notes on Assignment 19
Assignments 20 and 21
Curvilinear Coordinates



Announcements
Review Basic Theorems About Integration from Calculus I



Theorem
Second Derivative Test for Local Extrema.
Suppose f : Rn → R1 has continuous third order partial derivatives
on a neighborhood of x0 which is a critical point of f .

IF the Hessian H evaluated at x0 is positive definite, then f has a
relative minimum at x0.

If the Hessian is negative definite, then there is a relative
maximum at the critical point.



Example: Our Temperature Function
T (x , y) = 2x2 + 4y2 + 2x + 1

Here Tx(x , y) = 4x + 2 and Ty (x , y) = 8y .
Thus, the Hessian Matrix H is

H =

(
4 0
0 8

)
whose eigenvalues are 4 and 8.

Both are positive so T has a minimum wherever the gradient is 0;
that is, at (-1/2,0).



Example: T (x , y) = x2 − y2

∇T (x , y) = (2x ,−2y) so ∇T = 0⃗ at (0, 0)

Thus, the Hessian Matrix H is

H =

(
2 0
0 −2

)
whose eigenvalues are 2 and -2.

Thus it is neither positive definite nor negative definite.

x · Hx can be positive (x = (1, 0)) or negative (x = (0,1)) so there
is a saddle point at any point where ∇T is 0⃗.



Example: f (x , y) = x3 − y3 − 2xy

Here ∇f = (3x2 − 2y ,−3y2 − 2x)

∇f = 0⃗ when
3x2 = 2y and 3y2 = −2x

The first equation gives 9x4 = 4y2 and the second yields y2 = −2
3x

Thus 9x4 = 4(−2
3x) = −8

3x
so 9x4 = −8

3x or 27x4 + 8x = 0; Hence x(27x3 + 8) = 0
This gives two solutions: x = 0, y = 0 and x = −2

3 , y = 2
3

Two Critical Points: (0,0) and (-2/3, 2/3)



Example: f (x , y) = x3 − y3 − 2xy
∇f = (3x2 − 2y ,−3y2 − 2x)

Two Critical Points: (0,0) and (-2/3, 2/3)
The Hessian Matrix is

H =

(
6x −2
−2 −6y

)
At (-2/3,2/3), Hessian is

H =

(
−4 −2
−2 −4

)
whose eigenvalues are -2 and -6, both negative.
Thus there is a relative maximum at (-2/3,2/3),/



Example: f (x , y) = x3 − y3 − 2xy
∇f = (3x2 − 2y ,−3y2 − 2x)

Two Critical Points: (0,0) and (-2/3, 2/3)
The Hessian Matrix is

H =

(
6x −2
−2 −6y

)
At (0,0), Hessian is

H =

(
0 −2
−2 0

)
whose eigenvalues are -2 and +2.

. Thus there is a saddle point at (0,0),



More About Saddle Points
”Relative Maximum in One Direction, but Relative Minimum in

Another Direction”
How Do We Find These Directions?

Look at the Eigenvectors!
Take our example f (x , y) = x3 − y3 − 2xy at the origin.

The eigenvalue -2 has eigenvector of the form (1,1)
Consider f (x , x) = x3 − x3 − 2xx = −2x2 has relative maximum at

x = 0
The eigenvalue +2 has eigenvector of the form (1,-1).

Consider f (x ,−x) = x3 + x3 + 2xx = 2x3 + 2x2 = 2x2(1 + x) has
relative minimum at x = 0



Graph of f (x , y) = x3 − y3 − 2xy



Next Time

Alternative Coordinate Systems
for 3-Space

Rectangular
Cylindrical
Spherical



Today:
Curvilinear Coordinates

Coordinate Systems in Plane and Space
Plane

Cartesian Polar
Newton(1671) [Not published until after death]

Jacob Bernoulli (1691)
In Polar Coordinates, Circles and Lines Through Origin Have

Simple Equations:
Circle: r = 4
Line: θ = π/6



Relationship Between Polar and Cartesian



Linear Algebra Perspective

P

(
r
θ

)
=

(
r cos θ
r sin θ

)
=

(
x
y

)
for 0 < r < ∞
0 ≤ θ ≤ 2π

P : U2 → R2

Example: P sends this line segment S to circle of radius 2 with
center at origin.

[r , θ] = [2, t], 0 ≤ t ≤ 2π



Example: θ = t, r = sin t = sin θ

r = sin t θ = t

0 0 0
π/6 1/2 π /6

π/4
√
2/2 π/4

π/2 1 π/2

Then x = r cos θ = sin θ cos θ and y = r sin θ = sin θ sin θ
So x2 = sin2 θ cos2 θ, y2 = sin2 θ sin2 θ
and then x2 + y2 = sin2 θ(cos2 θ+ sin2 θ) = sin2 θ× 1 = sin2 θ = y
Thus x2 + y2 − y = 0. Complete the square in y :
x2 + y2 − y + 1

4 = 1
4 =⇒ x2 + (y − 1

2)
2 = 1

4
which is the equation of a circle with center at (0,1/2) and radius
1/2.



x2 + y2 − y + 1
4 = 1

4 =⇒ x2 + (y − 1
2)

2 = 1
4

which is the equation of a circle
with center at (0,1/2) and radius 1/2.

The image is the right half of the circle:



Think of P as a function from R2 to R2. Then

P ′ =

(
∂
∂r (r cos θ)

∂
∂θ (r cos θ)

∂
∂r (r sin θ)

∂
∂θ (r sin θ)

)

P ′ =

(
cos θ −r sin θ
sin θ r cos θ

)
=⇒ P ′(π/6) =

(√
3/2 −1/4

1/2
√
3/4

)
Previous Example
g(t) = [sin t, t]

so g ′(t) = [cos t, 1]
At t = π/6, g ′(π/6) =

[√
3/2, 1

]
g : R1 → U2 and P : U2 → R2

(P ◦ g) : R1 → R2

(P ◦ g)′ = P ′(g) · g ′

Evaluate at π/6:

(√
3/2 −1/4

1/2
√
3/4

)(√
3/2
1

)
=

(
1/2√
3/2

)



Coordinate Systems in 3-Space
Cylindrical Coordinates: (r , θ, z).

x = r cos θ
y = r sin θ
z = z



Coordinate Systems in 3-Space
Spherical Coordinates: (ρ, θ, ϕ) = (r , θ, ϕ)

r = distance between origin and point
θ = project down to xy -plane

ϕ = rotation down from vertical axis
r = distance between origin and point x = r sinϕ cos θ
θ = project down to xy -plane. y = r sinϕ sin θ
ϕ = rotation down from vertical axis z = r cosϕ

Some authors use ρ instead of r .



Converting from Spherical To Cartesian

cosϕ =
z

r
=⇒ z = r cosϕ

cos θ =
x

r sinϕ
=⇒ x = r sinϕ cos θ

sin θ =
y

r sinϕ
=⇒ y = r sinϕ sin θ



S :

r
ϕ
θ

 →

r sinϕ cos θ
r sinϕ sin θ
r cosϕ



r = Constant ϕ = Constant θ = Constant
Sphere Cone Plane



Jacobian Matrices

(
cos θ −r sin θ
sin θ r cos θ

)

cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1


sinϕ cos θ r cosϕ cos θ −r sinϕ sin θ
sinϕ sin θ r cosϕ sin θ r sinϕ cos θ
cosϕ −r sinϕ 0




