
MATH 223: Multivariable Calculus

Class 24: Monday, April 14, 2025





Notes on Assignment 21
Assignment 22

Early Thoughts on Location Problem



Announcements

Review : Change of Variable (Method of Substitution)
Improper Integrals



This Week:
Definition of Multiple Integrals (Last Week)

Properties of the Integral
Change of Variable

Application to Probability



MULTIPLE INTEGRAL

Definition A function f is integrable over a bounded set B if there
is a number

∫
B fdV such that

limmesh(g)→0

∑
f (x⃗i )v(Ri )) =

∫
B fdV for every grid G covering B

with mesh (G ) and any choice of x⃗i in R⟩

What This Limit Statement Means: For every ϵ > 0, there is a
δ > 0 such that if G is a grid of mesh < δ, then

|
∫
B fdV −

∑
f (x⃗i )v(Ri ))| < ϵ.

Theorem (not proved):
∫
B fdV can be evaluated by Iterated
Integrals.



Properties of the Integral
Linearity

Suppose f and g are both integrable over B while a and b are any
real numbers.

Then af + bg is integrable over B and∫
B(af + bg)dV = a

∫
B fdV + b

∫
B gdV

Corollary (1) The set V of functions integrable over B is closed
under addition and scalar multiplication so V is a vector space.
(2) The function L : V → R1 given by L(f ) =

∫
B fdV is a linear

transformation.



Let ϵ > 0 be given. Choose δ > 0 so that if S1 and S2 are
Riemann sums for f and g respectively with mesh < δ, then

|a||S1 −
∫
B fdV | < ϵ

2 and |b||S2 −
∫
B gdV | < ϵ

2 .

Now let S be a Riemann sum for af + bg with mesh of grid < δ.

Then S =
∑

(af + bg)f (x⃗i )V (Ri )

= a
∑

f (x⃗i )V (Ri ) + b
∑

g(x⃗i )V (Ri )

= aS1 + bS2

Now |S − a
∫
fdV − b

∫
gdV | = |aS1 − a

∫
fdV + bS2 − b

∫
gdV |

≤ |a||S1 −
∫
fdV |+ |b||S2 −

∫
gdV | < ϵ

2 + ϵ
2 = ϵ



Theorem:(Positivity) If f is nonnegative and integrable over B,
then

∫
B fdV ≥ 0.

Theorem: If f , g are integrable on B with f ≥ g , then
∫
f ≥

∫
g .

Proof: (f − g) ≥ 0 implies
∫
B(f − g)dV ≥ 0

so 0 ≤
∫
B(f − g)dV =

∫
B fdV −

∫
B gdV

Hence
∫
B fdV ≥

∫
B gdV



Theorem: If f and |f | are integrable over B, then
|
∫
B fdV | ≤

∫
B |f |dV

Proof: Start with −|f | ≤ f ≤ |f |
Then −

∫
B |f | ≤

∫
B f ≤

∫
B |f |

So |
∫
B f | ≤

∫
B |f |



Theorem (Additivity): If f is integrable over disjoint sets B1 and
B2, then f is integrable over B1 ∪ B2 with

∫
B1∪B2

f =

∫
B1

f +

∫
B2

f



Leibniz Rule

Gottfried Wilhelm von Leibniz
July 1, 1646 – November 14, 1716

Biography

http://mathshistory.st-andrews.ac.uk/Biographies/Leibniz.html


Leibniz Rule: Interchanging Differentiation and Integration
If gy is continuous on a ≤ x ≤ b, c ≤ y ≤ d , then

d

dy

∫ b

a
g(x , y)dx =

∫ b

a

∂

∂y
g(x , y)dx



d

dy

∫ b

a
g(x , y)dx =

∫ b

a

∂

∂y
g(x , y)dx

Example Compute f (x) =
∫ 1
0

ux−1
ln u du

By Leibniz:

f ′(x) =

∫ 1

0

1

ln u
(ux ln u)du =

∫ 1

0
uxdu =

ux+1

x + 1

∣∣∣∣u=1

u=0

=
1

x + 1

So f (x) = ln(x + 1) + C for some constant C .
To Find C , evaluate at x = 0:
f (0) =

∫ 1
0

u0−1
ln u du =

∫ 1
0 0 = 0

But f (0) = ln(0 + 1) + C = ln(1) + C = 0 + C = C so C = 0 and
f (x) = ln(x + 1)



Example: Find f ′(y) if f (y) =
∫ 1
0 (y

2 + t2)dt

Method I: f (y) =
∫ 1
0 (y

2 + t2)dt = (y2t + t3

3 )

∣∣∣∣t=1

t=0

= y2 + 1
3 so

f ′(y) = 2y

Method II: (Leibniz) f ′(y) =
∫ 1
0 2ydt = 2yt

∣∣∣∣1
0

= 2y



Proof of Leibniz Rule

To Show:

d

dy

∫ b

a
g(x , y)dx =

∫ b

a

∂

∂y
g(x , y)dx

Let f (y) =
∫ b
a g(x , y)dx and Use Definition of Derivative

f ′(y) = limh→0
f (y+h)−f (y)

h

f (y+h)−f (y)
h =

∫ b
a g(x ,y+h)dx−

∫ b
a g(x ,y)dx

h =
∫ b
a (g(x ,y+h)−g(x ,y))dx

h



f ′(y) = lim
h→0

f (y + h)− f (y)

h
= lim

h→0

∫ b
a [g(x , y + h)− g(x , y)] dx

h

Interchange Limit and Integral:

=

∫ b

a

(
limh→0

[g(x , y + h)− g(x , y)]

h

)
dx

=

∫ b

a

∂g

∂y
(x , y)dx



Alternate Proof of Leibniz Rule
( Uses Iterated Integral)

Begin with
∫ b
a gy (x , y)dx

Let I =
∫ y
c (

∫ b
a gy (x , y)dx)dy

Switch Order of Integration: I =
∫ b
a

(∫ y
c gy (x , y)dy

)
dx

I =

∫ b

a
g(x , y)

∣∣∣∣y=y

y=c

dx =

∫ b

a
g(x , y)− g(x , c)dx

=

∫ b

a
g(x , y)dx −

∫ b

a
g(x , c)dx

The left term is a function of y and the second is a constant C



Alternate Proof of Leibniz Rule (Continued)

I =

∫ y

c
(

∫ b

a
gy (x , y)dx)dy =

∫ b

a
g(x , y)dx − C

Now Take the Derivative of Each Side with Respect to y , using the
Fundamental Theorem of Calculus on the left:

∫ b

a
gy (x , y)dx =

d

dy

∫ b

a
g(x , y)dx − 0



Richard Feynman
May 11, 1918 – February 15, 1988

Nobel Prize in Physics, 1965

”I used that one damn tool again and again.”

” I caught on how to use that method, and I used that one damn tool
again and again. [If] guys at MIT or Princeton had trouble doing a
certain integral, [then] I come along and try differentiating under the

integral sign, and often it worked. So I got a great reputation for doing
integrals, only because my box of tools was different from everybody

else’s, and they had tried all their tools on it before giving the problem to
me. (Surely You’re Joking, Mr. Feynman!)

Richard Feynman’s Integral Trick

https://medium.com/cantors-paradise/richard-feynmans-integral-trick-e7afae85e25c

