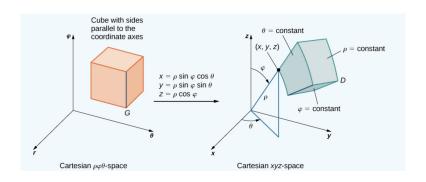
MATH 223: Multivariable Calculus



Class 26: Friday, April 18, 2025

Notes on Assignment 24
Assignment 25
Improper Integrals and Probability Density Functions

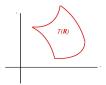
Progress Report on Location Problem:
Should Have Explicit Function To Minimize With
Full Rationale

Announcements

This Week:
Properties of Integral
Leibniz Rule
Change of Variable
Improper Integrals
Application to Probability

In computing mutitiple integrals, the corresponding change in the region may be more complicated.

By a **change of variable**, we will mean a vector function T from \mathbb{R}^n to \mathbb{R}^n . It is convenient to use different letters to denote the spaces; e.g, $T: \mathbb{U}^n \to \mathbb{R}^n$



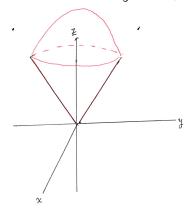
Jacobi's Theorem

Let $\mathcal R$ be a set in $\mathbb U^n$ and $T(\mathcal R)$ its image under T; that is, $T(\mathcal R) = \{T(\vec u) : \vec u \text{ is in } \mathcal R\}$ Suppose $f: \mathbb R^n \to \mathbb R^1$ is a real-valued function. Then, under suitable conditions,

$$\int_{T(\mathcal{R})} f(\vec{x}) dV_{\vec{x}} = \int_{\mathcal{R}} f(T(\vec{u})) |detT'(\vec{u})| dV_{\vec{u}}$$

- T is continuous differentiable
- lacktriangle Boundary of ${\cal R}$ is finitely many smooth curves
- ightharpoonup T is one-to-one on interior of \mathcal{R}
- ▶ The Jacobian Determinant det T' is non zero on interior of \mathcal{R} .
- ▶ The function f is bounded and continuous on $T(\mathcal{R})$

Problem: Evaluate $\iiint_C \sqrt{x^2 + y^2 + z^2} dV$ where C is the ice cream cone $\{(x,y,z): x^2 + y^2 + z^2 \le 1, x^2 + y^2 \le \frac{z^2}{3}, z \ge 0\}$



Example: Spherical Coordinates

$$x = r \sin \phi \cos \theta \qquad T : (r, \phi, \theta) \rightarrow (x, y, z)$$

$$y = r \sin \phi \sin \theta \qquad \det T' = r^2 \sin \phi$$

$$z = r \cos \phi$$

$$\underline{Problem}: \text{ Evaluate } \iiint_C \sqrt{x^2 + y^2 + z^2} dV$$

$$\text{where } C \text{ is the ice cream cone}$$

$$\{(x, y, z) : x^2 + y^2 + z^2 \le 1, x^2 + y^2 \le \frac{z^2}{3}, z \ge 0\}$$

$$z \ge 0 \text{ implies } \phi \le \frac{\pi}{2}$$

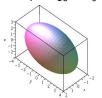
$$x^2 + y^2 + z^2 \le 1 \text{ implies } r \le 1$$

$$x^2 + y^2 \le \frac{z^2}{3} \text{ implies } r^2 \sin^2 \phi \le \frac{r^2 \cos^2 \phi}{3}$$

$$\text{implies } \tan^2 \phi \le \frac{1}{3} \text{ implies } \phi \le \frac{\pi}{6}$$

$$\int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi/6} \int_{r=0}^{1} \sqrt{r^2} r^2 \sin \phi \, dr \, d\phi \, d\theta$$

Example: Evaluate $\iiint_D z^2 dV$ where D is the interior of the ellipsoid $\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$

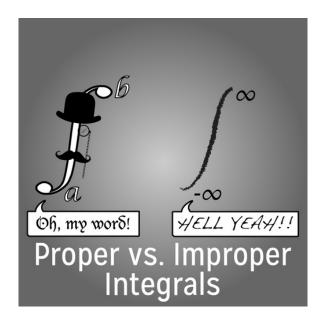


STEP 1: Let
$$u=\frac{x}{2}, v=\frac{y}{4}, w=\frac{z}{3}$$
. Equation of the ellipsoid becomes $u^2+v^2+w^2=1$ (unit sphere) So $x=2u, y=4v, z=3w$ gives $T(u,v,w)=(2u,4v,3w)$ and
$$\begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$$

$$T' = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix} \text{ so det } T' = 2 \times 4 \times 3 = 24$$

Thus $\iiint_D z^2 = \iiint (3w)^2 (24) \, du \, dv \, dw = 216 \iiint w^2 \, du \, dv \, dw$

STEP 2: Switch to Spherical Coordinates: $u = r \sin \phi \cos \theta$, $v = r \sin \phi \sin \theta$, $w = r \cos \phi$ 216 $\iiint w^2 \, du \, dv \, dw = 216 \iiint (r \cos \phi)^2 r^2 \sin \phi \, dr \, d\phi \, d\theta$ $= 216 \int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi} \int_{r=0}^{1} r^4 \cos^2 \phi \sin \phi \, dr \, d\phi \, d\theta$ $= (216)(2\pi) \int_{\phi=0}^{\pi} \int_{r=0}^{1} r^4 \cos^2 \phi \sin \phi \, dr \, d\phi$ $= (216)(2\pi) \frac{1}{5} \int_{\phi=0}^{\pi} \cos^2 \phi \sin \phi \, d\phi$ $= \frac{(216)(2\pi)}{5} \left[-\frac{\cos^3 \phi}{3} \right]_{\phi=0}^{\pi} = \frac{(216)(2\pi)}{5} \frac{2}{3} = \frac{288\pi}{5}$



Improper Integrals

Setting $\int_{\mathcal{B}} f \ dV$ where \mathcal{B} is a subset of \mathbb{R}^n and $f: \mathbb{R}^n \to \mathbb{R}^1$

Two Types:

(I): \mathcal{B} is unbounded

(II) \mathcal{B} is bounded but f is unbounded

Type I Examples $\mathcal{B} = \mathsf{First} \; \mathsf{Quadrant}$

$$\int_0^\infty \int_0^\infty f(x, y) \, dy \, dx$$
$$\int_{r=0}^\infty \int_{\theta=0}^{\pi/2} f^*(r, \theta) r \, d\theta \, d\theta$$

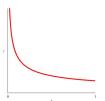
 \mathcal{B} is infinite strip

$$\int_{-1}^{\infty} \int_{1}^{2} f(x, y) \, dy \, dx$$

$$\int_{-1}^{\infty} \int_{1}^{2} f(x, y) dy dx = \lim_{b \to \infty} \int_{-1}^{b} \int_{1}^{2} f(x, y) dy dx$$

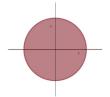
Type II Examples Classic Case

$$I = \int_0^1 \frac{1}{\sqrt{x}} \, dx$$



$$I = \lim_{a \to 0^+} \int_a^1 \frac{1}{\sqrt{x}} dx = \lim_{a \to 0^+} \left[2\sqrt{x} \right]_a^1 = \lim_{a \to 0^+} \left[2 - 2\sqrt{a} \right] = 2$$

Type II Examples In \mathbb{R}^2 , $f(x,y)=\frac{1}{\sqrt{x^2+y^2}}$ on unit disk



In Polar Coordinates:

$$\int_0^1 \int_0^{2\pi} \frac{1}{r} \, r \, d\theta \, dr = \lim_{a \to 0^+} \int_a^1 \int_0^{2\pi} \, d\theta \, dr = \lim_{a \to 0^+} \int_a^1 2\pi dr$$

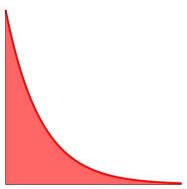
$$= \lim_{a \to 0^+} (2\pi - 2\pi a) = 2\pi$$

Improper Integrals

Let $\{B_{\delta}\}$ be a family of bounded sets B_{δ} that expands to cover all of the set B. We say $\int_{B} f(\mathbf{x}) dV$ is defined as an **improper integral** if the limit $\int_{B} f(\mathbf{x}) dV = \lim_{B_{\delta}} \int_{B} f(\mathbf{x}) dV$ is finite and independent of the family $\{B_{\delta}\}$ used to define it. If the limit exists (as a finite number), we say that the improper integral **converges** to that value. If the limit fails to exist, we say the improper integral **diverges**.

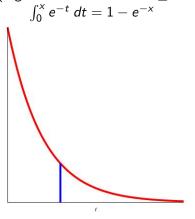
An Important Example: **Exponential Probability Density Function**

$$\int_0^\infty e^{-x} dx = \lim_{b \to \infty} \int_0^b e^{-x} dx = \lim_{b \to \infty} \left[-e^{-x} \Big|_{x=0}^b \right]$$
$$= \lim_{b \to \infty} \left[-e^{-b} - (-e^0) \right] = \lim_{b \to \infty} \left[1 - \frac{1}{e^b} \right] = 1$$



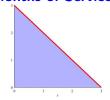
Exponential Probability Density Function

Probability(Light Bulb Burns Out in $\leq x$ months) =



X	$\int_0^x e^{-t} dt$	Prob(Bulb Lasts More than x months)
1	.632	.368
2	.865	.135
3	.950	.050
4	.982	.018

Suppose You Buy 2 Light Bulbs What Is The Probability They Will Provide At Least 3 Months of Service?



$$Prob(x + y > 3) = 1 - Prob(x + y \le 3)$$

$$=1-\int_{x=0}^{3}\int_{y=0}^{3-x}e^{-x}e^{-y}\ dy\ dx$$

Evaluate
$$1 - \int_{x=0}^{3} \int_{y=0}^{3-x} e^{-x} e^{-y} dy dx$$

$$= 1 - \int_0^3 e^{-x} \left[-e^{-y} \Big|_{y=0}^{3-x} \right] dx$$

$$= 1 - \int_0^3 e^{-x} \left[-e^{3-x} + 1 \right] dx$$

$$= 1 - \int_0^3 (e^{-x} - e^{-3}) dx$$

$$= 1 - \left[-e^{-x} - e^{-3}x \right]_{x=0}^3$$

$$= 1 - \left[-e^{-3} - 3e^{-3} + 1 + 0 \right] = 1 - \left[1 - \frac{4}{e^3} \right] = \frac{4}{e^3} \approx .199$$

Probability Density Function

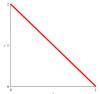
A real-valued function p such that $p(\vec{x}) \ge 0$ for all \vec{x} and $\int_S p = 1$ where S is the set of all possibilities.

Example 1 Uniform Density: p(x) = 1 on [0,1]

$$\int_{S} p = \int_{0}^{1} 1 = x \Big|_{0}^{1} = 1$$

Example 2:
$$p(x) = 2 - 2x$$
 on [0,1]

More likely to choose small numbers than larger numbers



<u>Problem</u>: Find the probability of picking a number less than 1/2.

$$\int_0^{1/2} (2-2x) \, dx = (2x-x^2) \bigg|_0^{1/2} = (1-\frac{1}{4}) - (0-0) = \frac{3}{4}$$

A probability density function on a set S in \mathbb{R}^n is a continuous non-negative real-valued function $p:S\to\mathbb{R}^1$ such that $\int_S p dV=1$

If an experiment is performed where S is the set of all possible outcomes, then the probability that the outcome lies in a particular subset T is $\int_T p(\vec{x}) \ dV$.

Example: The Bell Curve: The most important curve in statistics

Start with $y = e^{-\frac{x^2}{2}}$

Then
$$y' = -xe^{-\frac{x^2}{2}}$$
 and $y'' = (x^2 - 1)e^{-\frac{x^2}{2}}$
Point of inflection at $(1, \frac{1}{\sqrt{e}}) = (1, .606)$

Need to find
$$A = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx$$

Impossible to find antiderivative of $e^{-\frac{x^2}{2}}$

Need to find $A = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx$

$$A^{2} = \left(\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} dx\right) \left(\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} dx\right)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\frac{-x^{2}-y^{2}}{2}} dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} dy dx$$

Switch To Polar Coordinates: $A^2 = \int_{r=0}^{\infty} \int_{\theta=0}^{2\pi} e^{-\frac{r^2}{2}} r d\theta dr$

$$A^{2} = 2\pi \int_{r=0}^{\infty} re^{-\frac{r^{2}}{2}} dr = 2\pi \lim_{b \to \infty} \int_{r=0}^{b} re^{-\frac{r^{2}}{2}} dr$$

$$= 2\pi \lim_{b \to \infty} \left[-e^{-\frac{r^2}{2}} \right]_0^b = 2\pi \lim_{b \to \infty} \left[-\frac{1}{e^{b^2/2}} + \frac{1}{e^0} \right] = 2\pi \times 1 = 2\pi$$

Thus
$$A^2=2\pi$$
 so $A=\sqrt{2\pi}$

$$\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$$

To get a probability density, let $p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ This density is called the **Standard Normal Density**

Example: Suppose two numbers b and c are chosen at random between 0 and 1.

What is the probability that the quadratic equation $x^2 + bx + c = 0$ has a real root?

Solution: Choosing b and c is equivalent to choosing a point (b, c)from the unit square S with $p(\vec{x}) = 1$ (Uniform Density)

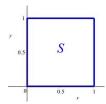
Then
$$\int_{S} p(\vec{x}) = \int_{S} 1 = area(S) = 1$$
.

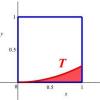
Now
$$x^2 + bx + c = 0$$
 has solution $x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$
For real root, need $b^2 - 4c \ge 0$ or $c \le \frac{b^2}{4}$

For real root, need
$$b^2-4c\geq 0$$
 or $c\leq rac{\hat{b}^2}{4}$

Let
$$T = \{(b, c) : c \leq \frac{b^2}{4}\}$$

$$\int_{\mathcal{T}} p(\vec{x}) = \int_{x=0}^{1} \int_{y=0}^{x^2/4} 1 \, dy \, dx = \int_{x=0}^{1} \frac{x^2}{4} \, dx = \frac{x^3}{12} \Big|_{0}^{1} = \frac{1}{12}$$





General Exponential Probability Distribution

$$p(x) = \lambda e^{-\lambda x}$$
 for $x \ge 0, \lambda > 0$
Easy to Show:

$$\int_0^\infty \lambda e^{-\lambda x} dx = 1 \text{ so it is a probability distribution}$$

Mean
$$\int_0^\infty \lambda x e^{-\lambda x} dx = \frac{1}{\lambda}$$

Prob(Bulb life
$$\geq 3$$
) = $1 - \int_3^\infty \lambda e^{-\lambda x} dx = 1 + e^{-\lambda x} \bigg|_3^\infty = 1 - e^{-3\lambda}$
Prob(2 lights have life ≥ 3) = $e^{-3\lambda}(1+3\lambda)$
More than b hours: $e^{-3b\lambda}(1+b\lambda)$