MATH 223: Multivariable Calculus

Class 28: Wednesday April 23, 2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Notes on Assignment 25 Assignment 26 Weighted Curves and Surfaces of Revolution

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Announcements

Chapter 8: Integrals and Derivatives on Curves

Today: Weighted Curves and Surfaces of Revolution

Friday: Normal Vectors and Curvature

Monday: Flow Lines, Divergence and Curl

$$\mathbf{F}(\vec{x}) = (F_1(\vec{x}), F_2(\vec{x}), ..., F_n(\vec{x}))$$

▲□▶▲圖▶★≧▶★≧▶ ≧ のQで

$$\mathbf{F}(\vec{x}) = (F_1(\vec{x}), F_2(\vec{x}), ..., F_n(\vec{x}))$$

What is Meaning of $\int_{\mathcal{D}} \mathbf{F}$?

< ロト < 団ト < 三ト < 三ト < 三 ・ つへの

$$\mathbf{F}(\vec{x}) = (F_1(\vec{x}), F_2(\vec{x}), ..., F_n(\vec{x}))$$

What is Meaning of $\int_{\mathcal{D}} \mathbf{F}$?

So Far: \mathcal{D} is a one-dimensional set in \mathbb{R}^n \mathcal{D} is a curve defined by a function $g: \mathbb{R}^1 \to \mathbb{R}^n$ on an interval $a \leq t \leq b$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 $\mathbf{F}(\vec{x}) = (F_1(\vec{x}), F_2(\vec{x}), ..., F_n(\vec{x}))$

What is Meaning of $\int_{\mathcal{D}} \mathbf{F}$?

So Far: \mathcal{D} is a one-dimensional set in \mathbb{R}^n \mathcal{D} is a curve defined by a function $g: \mathbb{R}^1 \to \mathbb{R}^n$ on an interval $a \leq t \leq b$ We denote the **image** of g by γ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\mathbf{F}(\vec{x}) = (F_1(\vec{x}), F_2(\vec{x}), ..., F_n(\vec{x}))$

What is Meaning of $\int_{\mathcal{D}} \mathbf{F}$?

So Far: \mathcal{D} is a one-dimensional set in \mathbb{R}^n \mathcal{D} is a curve defined by a function $g: \mathbb{R}^1 \to \mathbb{R}^n$ on an interval $a \leq t \leq b$ We denote the **image** of g by γ Definition The **Line Integral** of **F** over γ is

$$\int_{\gamma} \mathbf{F} \cdot d\vec{x} = \int_{a}^{b} \mathbf{F}(g(t)) \cdot g'(t) \, dt$$

Alternative Notation for n = 2 $g(T) = (g_1(t), g_2(t)) = (x(t), y(t))$ $\mathbf{F}(x, y) = (F_1(x, y), F_2(x, y))$ $\int_{\gamma} \mathbf{F} \cdot d\vec{x} = int_{\gamma}(F_1dx + F_2dy)$ In our example, $\int_{\gamma} (xdx + yx^2dy)$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

<u>Theorem</u> The value of the line integral $\int_{\gamma} \mathbf{F}$ is independent of the parametrization of γ but in general is dependent on the curve itself.

For some vector fields, the line integral $\int_{\gamma} \mathbf{F}$ depends only on the **endpoints** of the curve.

Theorem (The Fundamental Theorem of Calculus for Line Integrals. Let $f : \mathbb{R}^n \to \mathbb{R}^1$ be continuously differentiable and let $\mathbf{F} = \nabla f$ and suppose $\gamma : \mathbb{R}^1 \to \mathbb{R}^n$ is a continuous curve with endpoints \vec{a} and \vec{b} . Then $\int_{\gamma} \mathbf{F} = \int_{\gamma} \nabla f = f(\vec{b}) - f(\vec{a}).$

If $\mathbf{F} = \nabla f$ for some f, then we call \mathbf{F} a **Conservative Vector Field** or an **Exact Vector Field**

and f is called a **Potential** of **F**

The function $P(\vec{x}) = -f(\vec{x})$ is the **Potential Energy** of the field **F**.

Conservative Vector Field: $\mathbf{F}(x, y) = (2xy, x^2 + 2y)$ Nonconservative Example $\mathbf{F}(x, y) = (x, x + 1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

If $\mathbf{F} = \nabla f$ for some f, then we call \mathbf{F} a **Conservative Vector Field** or an **Exact Vector Field**

and f is called a **Potential** of **F**

The function $P(\vec{x}) = -f(\vec{x})$ is the **Potential Energy** of the field **F**.

Conservative Vector Field: $\mathbf{F}(x, y) = (2xy, x^2 + 2y)$ Nonconservative Example $\mathbf{F}(x, y) = (x, x + 1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

<u>Problem 23</u> $\mathbf{F}(g(t)) = [m(t)v(t)]' = m'(t)v(t) + m(t)v'(t)$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

<u>Problem 23</u> $\mathbf{F}(g(t)) = [m(t)v(t)]' = m'(t)v(t) + m(t)v'(t)$ (a) $\mathbf{F}(g(t)) \cdot g'(t)$

<u>Problem 23</u> $\mathbf{F}(g(t)) = [m(t)v(t)]' = m'(t)v(t) + m(t)v'(t)$ (a) $\mathbf{F}(g(t)) \cdot g'(t)$ $= [m'v + mv'] \cdot g'$

<u>Problem 23</u> $\mathbf{F}(g(t)) = [m(t)v(t)]' = m'(t)v(t) + m(t)v'(t)$

(a)
$$\mathbf{F}(g(t)) \cdot g'(t)$$

= $[m'v + mv'] \cdot g'$
= $[m'v + mv'] v = m'v^2 + mvv'$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

<u>Problem 23</u> $\mathbf{F}(g(t)) = [m(t)v(t)]' = m'(t)v(t) + m(t)v'(t)$

(a)
$$\mathbf{F}(g(t)) \cdot g'(t)$$

= $[m'v + mv'] \cdot g'$
= $[m'v + mv'] v = m'v^2 + mvv'$

(b) m(t) = Constant implies m' = 0

<u>Problem 23</u> $\mathbf{F}(g(t)) = [m(t)v(t)]' = m'(t)v(t) + m(t)v'(t)$

(a)
$$\mathbf{F}(g(t)) \cdot g'(t)$$

= $[m'v + mv'] \cdot g'$
= $[m'v + mv'] v = m'v^2 + mvv'$

(b)
$$m(t) = \text{Constant implies } m' = 0$$

so $\mathbf{F}(g(t)) \cdot g'(t) = mvv'$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

Problem 23 $\mathbf{F}(g(t)) = [m(t)v(t)]' = m'(t)v(t) + m(t)v'(t)$

(a)
$$\mathbf{F}(g(t)) \cdot g'(t)$$

= $[m'v + mv'] \cdot g'$
= $[m'v + mv'] v = m'v^2 + mvv'$

(b)
$$m(t) = \text{Constant implies } m' = 0$$

so $\mathbf{F}(g(t)) \cdot g'(t) = mvv'$

$$\int_{a}^{b} mvv' \, dt = \left. \frac{mv^2}{2} \right|_{t=a}^{t=b}$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

Suppose **F** is a force field which moves an object of mass m from \vec{a} to \vec{b} along curve $_gamma$.

Suppose **F** is a force field which moves an object of mass m from \vec{a} to \vec{b} along curve $_{q}amma$.

Let g be a parametrization of curve γ and v(t) = g'(t).

Suppose **F** is a force field which moves an object of mass m from \vec{a} to \vec{b} along curve $_{a}amma$.

Let g be a parametrization of curve γ and v(t) = g'(t). Then (by Exercise 23) the work done in moving the object is

$$rac{1}{2}m|v(t_b)|^2 - rac{1}{2}m|v(t_a)|^2$$
(Change in Kinetic Energy)

Suppose **F** is a force field which moves an object of mass m from \vec{a} to \vec{b} along curve $_{a}amma$.

Let g be a parametrization of curve γ and v(t) = g'(t). Then (by Exercise 23) the work done in moving the object is

$$rac{1}{2}m|v(t_b)|^2-rac{1}{2}m|v(t_a)|^2$$
(Change in Kinetic Energy)

If **F** is a conservative field, then we can also compute work done by $\int_{\gamma} \mathbf{F} = f(\vec{b}) - f(\vec{a}) = p(\vec{a}) - p(\vec{b}) = \text{Change in Potential Energy}$

Suppose **F** is a force field which moves an object of mass m from \vec{a} to \vec{b} along curve $_{a}amma$.

Let g be a parametrization of curve γ and v(t) = g'(t). Then (by Exercise 23) the work done in moving the object is

$$rac{1}{2}m|v(t_b)|^2 - rac{1}{2}m|v(t_a)|^2$$
(Change in Kinetic Energy)

If **F** is a conservative field, then we can also compute work done by $\int_{\gamma} \mathbf{F} = f(\vec{b}) - f(\vec{a}) = p(\vec{a}) - p(\vec{b}) = \text{Change in Potential Energy}$ Equating the two expressions for work, we have $\frac{1}{2}m|v(t_b)|^2 - \frac{1}{2}m|v(t_a)|^2 = p(\vec{a}) - p(\vec{b})$

(日)((1))

Suppose **F** is a force field which moves an object of mass m from \vec{a} to \vec{b} along curve $_a amma$.

Let g be a parametrization of curve γ and v(t) = g'(t). Then (by Exercise 23) the work done in moving the object is

$$rac{1}{2}m|v(t_b)|^2-rac{1}{2}m|v(t_a)|^2$$
(Change in Kinetic Energy)

If **F** is a conservative field, then we can also compute work done by $\int_{\gamma} \mathbf{F} = f(\vec{b}) - f(\vec{a}) = p(\vec{a}) - p(\vec{b}) = \text{Change in Potential Energy}$ Equating the two expressions for work, we have $\frac{1}{2}m|v(t_b)|^2 - \frac{1}{2}m|v(t_a)|^2 = p(\vec{a}) - p(\vec{b})$ $p(\vec{b}) + \frac{1}{2}m|v(t_b)|^2 = p(\vec{a}) + \frac{1}{2}m|v(t_a)|^2$ where \vec{a} and \vec{b} are any 2 points

Suppose **F** is a force field which moves an object of mass m from \vec{a} to \vec{b} along curve $_{a}amma$.

Let g be a parametrization of curve γ and v(t) = g'(t). Then (by Exercise 23) the work done in moving the object is

$$rac{1}{2}m|v(t_b)|^2 - rac{1}{2}m|v(t_a)|^2$$
(Change in Kinetic Energy)

If **F** is a conservative field, then we can also compute work done by $\int_{\gamma} \mathbf{F} = f(\vec{b}) - f(\vec{a}) = p(\vec{a}) - p(\vec{b}) = \text{Change in Potential Energy}$ Equating the two expressions for work, we have $\frac{1}{2}m|v(t_b)|^2 - \frac{1}{2}m|v(t_a)|^2 = p(\vec{a}) - p(\vec{b})$ $p(\vec{b}) + \frac{1}{2}m|v(t_b)|^2 = p(\vec{a}) + \frac{1}{2}m|v(t_a)|^2$ where \vec{a} and \vec{b} are any 2 points But T(x)= sum of Potential and Kinetic Energy Law of Conservation of Total Energy

Let $g : \mathbb{R}^1 \to \mathbb{R}^n$ be defined on $a \leq t \leq b$. Then the image of g is a curve γ with length $L(\gamma) = \int_a^b |g'(t)| dt$.

Let $g: \mathbb{R}^1 \to \mathbb{R}^n$ be defined on $a \leq t \leq b$. Then the image of g is a curve γ with length $L(\gamma) = \int_a^b |g'(t)| dt$. Example: Cycloid: $g(t) = (t - \sin t, 1 - \cos t), 0 \leq t \leq 2\pi$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $g : \mathbb{R}^1 \to \mathbb{R}^n$ be defined on $a \le t \le b$. Then the image of g is a curve γ with length $L(\gamma) = \int_a^b |g'(t)| dt$. Example: Cycloid: $g(t) = (t - \sin t, 1 - \cos t), 0 \le t \le 2\pi$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $g: \mathbb{R}^1 \to \mathbb{R}^n$ be defined on $a \leq t \leq b$. Then the image of g is a curve γ with length $L(\gamma) = \int_{a}^{b} |g'(t)| dt$. Example: Cycloid: $g(t) = (t - \sin t, 1 - \cos t), 0 \le t \le 2\pi$ 3 , 2 $\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{3\pi}{4}$ π $\frac{5\pi}{4}$ $\frac{3\pi}{2}$ $\frac{7\pi}{4}$ 2π $q'(t) = (1 - \cos t, \sin t)$ $|q'(t)| = \sqrt{(1 - \cos t)^2 + \sin^2 t} = \sqrt{1 - 2\cos t + \cos^2 t + \sin^2 t} =$ $\sqrt{2 - 2\cos t} = \sqrt{2(1 - \cos t)} = \sqrt{2(2\sin^2(t/2))} = 2\sin(t/2)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Let $q: \mathbb{R}^1 \to \mathbb{R}^n$ be defined on $a \leq t \leq b$. Then the image of g is a curve γ with length $L(\gamma) = \int_{a}^{b} |g'(t)| dt$. Example: Cycloid: $g(t) = (t - \sin t, 1 - \cos t), 0 \le t \le 2\pi$ 3 , 2 $\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{3\pi}{4}$ π $\frac{5\pi}{4}$ $\frac{3\pi}{2}$ $\frac{7\pi}{4}$ 2π $q'(t) = (1 - \cos t, \sin t)$ $|q'(t)| = \sqrt{(1 - \cos t)^2 + \sin^2 t} = \sqrt{1 - 2\cos t + \cos^2 t + \sin^2 t} =$ $\sqrt{2 - 2\cos t} = \sqrt{2(1 - \cos t)} = \sqrt{2(2\sin^2(t/2))} = 2\sin(t/2)$ $L(\gamma) = \int_0^{2\pi} 2\sin(t/2) \, dt = -4\cos(t/2) \bigg|^{2\pi} = 8$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

$$L(\gamma) = \int_{a}^{b} |g'(t)| dt$$

$$L(\gamma) = \int_{a}^{b} |g'(t)| dt$$

If a curve is given by $y = f(x), a \le x \le b$, then let g(t) = (t, f(t))

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$L(\gamma) = \int_{a}^{b} |g'(t)| dt$$

If a curve is given by $y=f(x), a\leq x\leq b,$ then let g(t)=(t,f(t)) so $|g'(t)|=|(1,f'(t)|=\sqrt{1+[f'(t)]^2}$

$$L(\gamma) = \int_{a}^{b} |g'(t)| dt$$

If a curve is given by $y = f(x), a \le x \le b$, then let g(t) = (t, f(t))so $|g'(t)| = |(1, f'(t)| = \sqrt{1 + [f'(t)]^2}$ If $g(t) = (h_1(t), h_2(t))$, then $|g'(t)| = \sqrt{[h'_1]^2 + [h'_2]^2}$.

Let γ be a curve parametrized by g(t) for $t_0 \leq t \leq t_1$ With $\vec{x}(t) = g(t), \vec{x}$ is position at time t.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let γ be a curve parametrized by g(t) for $t_0 \le t \le t_1$ With $\vec{x}(t) = g(t), \vec{x}$ is position at time t. Then arc length function is $s = s(t) = \int_{t_0}^t |g'(t)| dt = \int_{t_0}^t |x(t)| dt$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let γ be a curve parametrized by g(t) for $t_0 \leq t \leq t_1$ With $\vec{x}(t) = g(t), \vec{x}$ is position at time t. Then arc length function is $s = s(t) = \int_{t_0}^t |g'(t)| dt = \int_{t_0}^t |x(t)| dt$ If |g'(t)| = 1 for all t, then we say the curve is parametrized by arc length

Let γ be a curve parametrized by g(t) for $t_0 \le t \le t_1$ With $\vec{x}(t) = g(t), \vec{x}$ is position at time t.

Then arc length function is $s = s(t) = \int_{t_0}^t |g'(t)| dt = \int_{t_0}^t |x(t)| dt$ If |g'(t)| = 1 for all t, then we say the curve is parametrized by arc length

Moving along the curve with uniform speed of 1 means that at time s we are at a point s units along the curve.

Example 1: Unit Circle: $g(t) = (\cos t, \sin t), 0 \le t \le 2\pi$

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$\begin{split} \underline{\text{Example 1}} &: \text{Unit Circle: } g(t) = (\cos t, \sin t), 0 \le t \le 2\pi \\ \underline{\text{Example 2}} &\text{Helix: } g(t) = \left(\frac{a \cos t}{\sqrt{a^2 + b^2}}, \frac{a \sin t}{\sqrt{a^2 + b^2}}, \frac{bt}{\sqrt{a^2 + b^2}}\right). \\ &\text{Then } g'(t) = \left(\frac{-a \sin t}{\sqrt{a^2 + b^2}}, \frac{a \cos t}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}}\right). \\ &\text{and } |g'(t)| = \sqrt{\frac{a^2 \sin^2 t + a^2 \cos^2 t + b^2}{a^2 + b^2}} = \sqrt{\frac{a^2 + b^2}{a^2 + b^2}} = 1 \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Example 1: Unit Circle:
$$g(t) = (\cos t, \sin t), 0 \le t \le 2\pi$$

Example 2 Helix: $g(t) = \left(\frac{a \cos t}{\sqrt{a^2+b^2}}, \frac{a \sin t}{\sqrt{a^2+b^2}}, \frac{bt}{\sqrt{a^2+b^2}}\right)$.
Then $g'(t) = \left(\frac{-a \sin t}{\sqrt{a^2+b^2}}, \frac{a \cos t}{\sqrt{a^2+b^2}}, \frac{b}{\sqrt{a^2+b^2}}\right)$.
and $|g'(t)| = \sqrt{\frac{a^2 \sin^2 t + a^2 \cos^2 t + b^2}{a^2+b^2}} = \sqrt{\frac{a^2+b^2}{a^2+b^2}} = 1$

Mass of a Weighted Curve

Mass of a Weighted Curve Density (μ) is mass per unit length

ANX

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mass of a Weighted Curve Density (μ) is mass per unit length

Total Mass $\sim \sum \mu(point) \times$ Length of short piece of curve

Mass of a Weighted Curve Density (μ) is mass per unit length

Total Mass $\sim \sum \mu(point) \times$ Length of short piece of curve

Total Mass = $\int \mu(g(t)) |g'(t)| dt$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$\begin{array}{l} \mbox{Total Mass}: \ \int \mu(g(t)) |g'(t)| \ dt \\ \mbox{Example Spacecurve} \ g(t) = (\sin t, \cos t, t^2), 0 \leq t \leq 2\pi \end{array}$

 $\label{eq:starsest} \underbrace{ \begin{array}{l} \mbox{Total Mass}: \ \int \mu(g(t)) |g'(t)| \ dt \\ \mbox{Example Spacecurve } g(t) = (\sin t, \cos t, t^2), 0 \leq t \leq 2\pi \\ \mbox{Here } g'(t) = (\cos t, -\sin t, 2t) \end{array} }$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Total Mass :
$$\int \mu(g(t))|g'(t)| dt$$

Example Spacecurve $g(t) = (\sin t, \cos t, t^2), 0 \le t \le 2\pi$
Here $g'(t) = (\cos t, -\sin t, 2t)$
so $|g'(t)| = \sqrt{\cos^2 t + \sin^2 t + 4t^2} = \sqrt{1 + 4t^2}$
 $\int \frac{1}{2} \sqrt{1 + 4t^2} = \sqrt{1 + 4t^2}$
Suppose $\mu(x, y, z) = x^2 + y^2 + \sqrt{z} - 1$
Then $\mu(g(t)) = \mu(\sin t, \cos t, t^2) = \cos^2 + \sin^2 t + \sqrt{t^2} - 1$
 $= 1 + t - 1 = t$
Thus Mass $= \int_0^{2\pi} t\sqrt{1 + 4t^2} dt$
 $= \frac{1}{12}(1 + 4t^2)^{3/2} \Big|_0^{2\pi} = \frac{1}{12}[(1 + 16\pi^2)^{3/2} - 1]$

Surface of Revolution

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\begin{aligned} \mathsf{Volume} &= \int_a^b \pi \left[f(x) \right]^2 \, dx \\ \mathsf{Surface Area} &= \int_a^b 2\pi \sqrt{1 + \left[f(x) \right]^2} \, dx \\ \mathsf{Suppose curve has parametrization} \; g: \mathbb{R}^1 \to \mathbb{R}^2, t_0 \leq t \leq t_1 \\ g(t) &= (x(t), y(t)) \; \text{with} \; g(t_0) = (a, f(a)) \; \text{and} \; g(t_1) = (b, f(b)). \\ \mathsf{Volume} &= \int_{t_0}^{t_1} \pi \left[y(t) \right]^2 x'(t) \; dt \\ \mathsf{Surface Area} &= \int_{t_0}^{t_1} 2\pi y(t) |g'(t)| \; dt \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

イロト イボト イヨト イヨト 三日

(日)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()・