
MATH 223: Multivariable Calculus

Class 28: Wednesday April 23, 2025



Notes on Assignment 25
Assignment 26

Weighted Curves and Surfaces of Revolution



Announcements

Chapter 8: Integrals and Derivatives on Curves

Today: Weighted Curves and Surfaces of Revolution

Friday: Normal Vectors and Curvature

Monday: Flow Lines, Divergence and Curl



VECTOR FIELDS F : Rn → Rn

F(x⃗) = (F1(x⃗), F2(x⃗), .., Fn(x⃗)

What is Meaning of
∫
D F?

So Far: D is a one-dimensional set in Rn

D is a curve defined by a function g : R1 → Rn on an interval
a ≤ t ≤ b

We denote the image of g by γ
Definition The Line Integral of F over γ is

∫
γ
F · dx⃗ =

∫ b

a
F(g(t)) · g′(t) dt
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Alternative Notation for n = 2

g(T ) = (g1(t), g2(t)) = (x(t), y(t))

F(x, y) = (F1(x, y), F2(x, y))∫
γ F · dx⃗ = intγ(F1dx+ F2dy)

In our example,
∫
γ(xdx+ yx2dy)



Theorem The value of the line
integral

∫
γ F is independent of the

parametrization of γ but in general is
dependent on the curve itself.



For some vector fields, the line
integral

∫
γ F depends only on the

endpoints of the curve.



Theorem (The Fundamental
Theorem of Calculus for Line
Integrals. Let f : Rn → R1 be
continuously differentiable and let

F = ∇f and suppose γ : R1 → Rn is
a continuous curve with endpoints a⃗

and b⃗.
Then

∫
γ F =

∫
γ ∇f = f (⃗b)− f (⃗a).



If F = ∇f for some f , then we call F
a Conservative Vector Field
or an Exact Vector Field

and f is called a Potential of F

The function P (x⃗) = −f(x⃗) is the Potential Energy of the field
F.

Conservative Vector Field: F(x, y) = (2xy, x2 + 2y)
Nonconservative Example F(x, y) = (x, x+ 1)
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Applicatiion Conservation of Energy

Problem 23 F(g(t)) = [m(t)v(t)]′ = m′(t)v(t) +m(t)v′(t)

(a) F(g(t)) · g′(t)
= [m′v +mv′] · g′

= [m′v +mv′] v = m′v2 +mvv′

(b) m(t) = Constant implies m′ = 0
so F(g(t)) · g′(t) = mvv′

∫ b
a mvv′ dt = mv2

2

∣∣∣∣t=b

t=a
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Applicatiion Conservation of Energy

Suppose F is a force field which moves an object of mass m
from a⃗ to b⃗ along curve gamma.

Let g be a parametrization of curve γ and v(t) = g′(t).
Then (by Exercise 23) the work done in moving the object is

1

2
m|v(tb)|2 −

1

2
m|v(ta)|2(Change in Kinetic Energy)

If F is a conservative field, then we can also compute work done by∫
γ F = f (⃗b)− f (⃗a) = p(⃗a)− p(⃗b) = Change in Potential Energy

Equating the two expressions for work, we have
1
2m|v(tb)|2 − 1

2m|v(ta)|2 = p(⃗a)− p(⃗b)

p(⃗b) + 1
2m|v(tb)|2 = p(⃗a) + 1

2m|v(ta)|2

where a⃗ and b⃗ are any 2 points
But T (x)= sum of Potential and Kinetic Energy

Law of Conservation of Total Energy
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Arc Length
Let g : R1 → Rn be defined on a ≤ t ≤ b. Then the image of g is

a curve γ with length L(γ) =
∫ b
a |g′(t)| dt.

Example: Cycloid: g(t) = (t− sin t, 1− cos t), 0 ≤ t ≤ 2π

g′(t) = (1− cos t, sin t)

|g′(t)| =
√
(1− cos t)2 + sin2 t =

√
1− 2 cos t+ cos2 t+ sin2 t =√

2− 2 cos t =
√

2(1− cos t) =
√
2(2 sin2(t/2) = 2 sin(t/2)

L(γ) =
∫ 2π
0 2 sin(t/2) dt = −4 cos(t/2)

∣∣∣∣2π
0

= 8
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Other Formulations

L(γ) =
∫ b
a |g′(t)| dt

If a curve is given by y = f(x), a ≤ x ≤ b, then let g(t) = (t, f(t))
so

|g′(t)| = |(1, f ′(t)| =
√
1 + [f ′(t)]2

If g(t) = (h1(t), h2(t)|, then |g′(t)| =
√
[h′1]

2 + [h′2]
2.
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Arc Length Parametrization
Let γ be a curve parametrized by g(t) for t0 ≤ t ≤ t1

With x⃗(t) = g(t),x⃗ is position at time t.

Then arc length function is s = s(t) =
∫ t
t0
|g′(t)| dt =

∫ t
t0
|x(t)| dt

If |g′(t)| = 1 for all t, then we say the curve is parametrized by
arc length

Moving along the curve with uniform speed of 1 means that at
time s we are at a point s units along the curve.
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Example 1: Unit Circle: g(t) = (cos t, sin t), 0 ≤ t ≤ 2π

Example 2 Helix: g(t) =
(

a cos t√
a2+b2

, a sin t√
a2+b2

, bt√
a2+b2

)
.

Then g′(t) =
(

−a sin t√
a2+b2

, a cos t√
a2+b2

, b√
a2+b2

)
.

and |g′(t)| =
√

a2 sin2 t+a2 cos2 t+b2

a2+b2
=

√
a2+b2

a2+b2
= 1
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, a cos t√
a2+b2

, b√
a2+b2

)
.

and |g′(t)| =
√

a2 sin2 t+a2 cos2 t+b2

a2+b2
=

√
a2+b2

a2+b2
= 1



Mass of a Weighted Curve

Density (µ) is mass per unit length

Total Mass ∼
∑

µ(point)× Length of short piece of curve

Total Mass =
∫
µ(g(t))|g′(t)| dt
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Total Mass :
∫
µ(g(t))|g′(t)| dt

Example Spacecurve g(t) = (sin t, cos t, t2), 0 ≤ t ≤ 2π

Here g′(t) = (cos t,− sin t, 2t)

so |g′(t)| =
√
cos2 t+ sin2 t+ 4t2 =

√
1 + 4t2

Suppose µ(x, y, z) = x2 + y2 +
√
z − 1

Then µ(g(t)) = µ(sin t, cos t, t2) = cos2+sin2 t+
√
t2 − 1

= 1 + t− 1 = t
Thus Mass =

∫ 2π
0 t

√
1 + 4t2 dt

= 1
12(1 + 4t2)3/2

∣∣∣∣2π
0

= 1
12

[
(1 + 16π2)3/2 − 1

]
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Surface of Revolution
S is a surface in R3 obtained by rotating a plane curve about a

straight line in the plane.
Simplest Case: Rotate y = f(x) about x-axis.

Volume =
∫ b
a π [f(x)]2 dx

Surface Area =
∫ b
a 2π

√
1 + [f(x)]2 dx



Volume =
∫ b
a π [f(x)]2 dx

Surface Area =
∫ b
a 2π

√
1 + [f(x)]2 dx

Suppose curve has parametrization g : R1 → R2, t0 ≤ t ≤ t1
g(t) = (x(t), y(t)) with g(t0) = (a, f(a)) and g(t1) = (b, f(b)).

Volume =
∫ t1
t0

π [y(t)]2 x′(t) dt

Surface Area =
∫ t1
t0

2πy(t)|g′(t)| dt



Example Revolve Semicircle of radius r about horizontal axis.

g(t) = (r cos t, r sin t), 0 ≤ t ≤ π
Volume =

∫ t1
t0

π [y(t)]2 x′(t) dt

Surface Area =
∫ t1
t0

2πy(t)|g′(t)| dt
Surface Area =

∫ π
t0
r22π sin t dt

= −2πr2 cos t

∣∣∣∣π
0

= −2r2π(−1− 1) = 4πr2.

Volume =
∫ π
0 π(r sin t)2r sin t dt = 4

3πr
3
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