
MATH 223: Multivariable Calculus

Class 29: April 23, 2025



Notes on Assignment 27
Assignment 28

Normal Vectors and Curvature



Exam 3: Wednesday Night at 7 PM
You May Bring One Sheet (Two-Sided) of Notes



Announcements

Chapter 7: Integrals and Derivatives on Curves

Today: Weighted Curves and Surfaces of Revolution
Conservation of Energy

Normal Vectors and Curvature

After Thanksgiving: Monday: Flow Lines, Divergence and Curl
Wednesday: Conservative Vector Fields



Mass of a Weighted Curve
Density (µ) is mass per unit length

Total Mass ∼
∑

µ(point)× Length of short piece of curve

Total Mass =
∫
µ(g(t))|g′(t)| dt



Total Mass :
∫
µ(g(t))|g′(t)| dt

Example Spacecurve g(t) = (sin t, cos t, t2), 0 ≤ t ≤ 2π

Here g′(t) = (cos t,− sin t, 2t)

so |g′(t)| =
√
cos2 t+ sin2 t+ 4t2 =

√
1 + 4t2

Suppose µ(x, y, z) = x2 + y2 +
√
z − 1

Then µ(g(t)) = µ(sin t, cos t, t2) = cos2+sin2 t+
√
t2 − 1

= 1 + t− 1 = t
Thus Mass =

∫ 2π
0 t

√
1 + 4t2 dt

= 1
12(1 + 4t2)3/2

∣∣∣∣2π
0

= 1
12

[
(1 + 16π2)3/2 − 1

]
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Surface of Revolution

S is a surface in R3 obtained by rotating a plane curve about a
straight line in the plane.

Simplest Case: Rotate y = f(x) about x-axis.

Volume =
∫ b
a π [f(x)]2 dx

Surface Area =
∫ b
a 2πf(x)

√
1 + [f ′(x)]2 dx
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Volume =
∫ b
a π [f(x)]2 dx

Surface Area =
∫ b
a 2πf(x)

√
1 + [f ′(x)]2 dx

Suppose curve has parametrization g : R1 → R2, t0 ≤ t ≤ t1
g(t) = (x(t), y(t)) with g(t0) = (a, f(a)) and g(t1) = (b, f(b)).

Volume =
∫ t1
t0

π [y(t)]2 x′(t) dt

Surface Area =
∫ t1
t0

2πy(t)|g′(t)| dt
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Suppose curve has parametrization g : R1 → R2, t0 ≤ t ≤ t1
g(t) = (x(t), y(t)) with g(t0) = (a, f(a)) and g(t1) = (b, f(b)).
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∫ t1
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Example Revolve Semicircle of radius r about horizontal axis.

g(t) = (r cos t, r sin t), 0 ≤ t ≤ π
Volume =

∫ t1
t0

π [y(t)]2 x′(t) dt

Surface Area =
∫ t1
t0

2πy(t)|g′(t)| dt
Surface Area =

∫ π
t0
r22π sin t dt

= −2πr2 cos t

∣∣∣∣π
0

= −2r2π(−1− 1) = 4πr2.

Volume =
∫ π
0 π(r sin t)2r sin t dt = 4

3πr
3



If F = ∇f for some f , then we call F
a Conservative Vector Field
or an Exact Vector Field

and f is called a Potential of F

The function P (x⃗) = −f(x⃗) is the Potential Energy of the field
F.

Conservative Vector Field: F(x, y) = (2xy, x2 + 2y)
Nonconservative Example F(x, y) = (x, x+ 1)



Application: Conservation of Energy

Suppose g(t) represents the position of an object of varying mass
m(t) in space at time t.

The velocity vector of the object is v = g′(t).
The Force acting on the object at position g(t) is

F(g(t)) = [m(t)v(t)]′ = m′(t)v(t) +m(t)v′(t)

Then

F(g(t)) · g′(t) = F(g(t)) · v(t)
=

[
m′(t)v(t) +m(t)v′(t)

]
· v(t)

= m′(t)v(t) · v(t) +m(t)v′(t) · v(t)
= m′(t)s2(t) +m(t)s′(t)s(t)

where s(t) = |v(t)| = speed at time t.



To Show: s′(t)s(t) = v′(t) · v(t)

Start with s2(t) = |v(t)|2 = v(t) · v(t)

Differentiate each side with respect to t:

2s(t)s′(t) = v′(t) · v(t) + v(t) · v′(t) = 2v′(t) · v(t)

Thus s′(t)s(t) = v′(t) · v(t)
and

F(g(t)) · g′(t) = m′(t)s2(t) +m(t)s′(t)s(t)



Application: Conservation of Energy

(a) F(g(t)) · g′(t) = m′(t)s2(t) +m(t)s′(t)s(t)
We’ll use the scalar v for the scalar s

so F(g(t)) · g′(t) = m′(t)v2(t) +m(t)v′(t)v(t)

(b) m(t) = Constant implies m′ = 0
so F(g(t)) · g′(t) = mv(t)v′(t)

∫ b
a mv(t)v′(t) dt = mv(t)2

2

∣∣∣∣t=b

t=a



Application: Conservation of Energy
Suppose F is a force field which moves an object of mass m

from a⃗ to b⃗ along curve γ.
Let g be a parametrization of curve γ and v(t) = g′(t).

Then the work done in moving the object is

1

2
m|v(tb)|2 −

1

2
m|v(ta)|2 ( Change in Kinetic Energy)

If F is a conservative field, then we can also compute work done by∫
γ F = f (⃗b)− f (⃗a) = p(⃗a)− p(⃗b) = Change in Potential Energy

Equating the two expressions for work, we have
1
2m|v(tb)|2 − 1

2m|v(ta)|2 = p(⃗a)− p(⃗b)

p(⃗b) + 1
2m|v(tb)|2 = p(⃗a) + 1

2m|v(ta)|2

where a⃗ and b⃗ are any 2 points
So Sum of Potential and Kinetic Energy is Constant

Law of Conservation of Total Energy



Normal Vectors and Curvature
Goal: Derive a Measure of Shape of a Curve.

How ”Curvy” is a Curve?

Setting: Curve γ lies in R2 or R3

Parametrization g whose image is γ.
Some texts use r or x = x(t) for the parametrization
Arc Length traversed by time t is denoted s(t) and is

a scalar quantity with
s(t) =

∫
|g′(t)| dt

Arc Length is Integral of Speed
Speed is Derivative of Arc Length:

s′(t) = |g′(t)|
so we will have g′(t) = s′(t)T(t)

where T is unit tangent vector g′(t)
|g′(t)|
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Unit Tangent Vector

T(t) = g′(t)
|g′(t)|

Example g(t) = (a cos t, a sin t, bt)

Then g′(t) = (−a sin t, a cos t, b) and |g′(t)| =
√
a2 + b2

T(t) = g′(t)
|g′(t)| =

(−a sin t,a cos t,b)√
a2+b2

Then T′ = (−a cos t,−a sin t,0)√
a2+b2

and |T′| = a√
a2+b2
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Principal Normal Vector
Start With Observation: T ·T = |T|2 = 1

Now differentiate both sides with respect to t:
T′ ·T+T ·T′ = 2T ·T′ = 0

So T ·T′ = 0
The vectors T and T′ are Orthogonal

The Principal Normal Vector
η(t) = N = T′

|T′|
Sometimes written as N = T’

|T’| or n = t
|t|
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Principal Normal
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Curvature
Recall s′(t) = |g′(t)| or, more compactly, s′ = |g′|

and T = g′

|g′| =
g′

s′ we have g′ = s′T.

Differentiate with respect to t:
g′′ = g′′ = (s′T)′ = s′′T+ s′T′

g′′ = s′′T + s′T′

acceleration component component
vector in direction in direction

of T of T′

Replace T′ by |T′|N:

g′′ = s′′T + s′|T′|N
acceleration tangential centripetal

vector acceleration acceleration
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Curvature

g′′ = s′′T + s′|T′|N
acceleration tangential centripetal

vector acceleration acceleration

Curvature is a measure of the bend
κ(t) =

∣∣dT
ds
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Theorem: κ = |T′|

s′ = |T′|
|g′(t)| .

Proof: dT
ds = dT

dt
dt
ds = T′

s′

κ =
|T′|
|g′(t)|
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Flow Lines
Suppose γ is a curve in Rn which has a parametrization g.
At each point on the curve, we can associate two vectors:

Tangent Vector: g’(t)
Vector Field: F(g(t))

If the two vectors coincide, then γ is called a flow line for F.



Hard Problem: Given F, find flow lines
(Central Question in Differential Equations)

Easy Problem: Given g and F, check if γ is a flow line for F.



Example: g(t) = (3 cos t
12 , 3 sin

t
12)

Then g’(t) = (−1
4 sin

t
12 ,

1
4 cos

t
12)

Suppose F(x, y) =

(
−y

4
√

x2+y2
, x

4
√

x2+y2

)
Then F(x, y) =

(
−3 sin t

12
4×3 ,

3 cos t
12

4×3

)
= g’(t)
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Flow Lines and Differential Equations
Star with a system of differential equations

dx

dt
= (2− y)(x− y) = f(x, y)

dy

dt
= (1 + x)(x+ y) = g(x, y)

Can write as a single equation:
dy
dx = (1+x)(x−y)

(2−y)(x−y) =
g(x,y)
f(x,y)

Observe:

1. Solution of the equation is a curve in the (x, y)-plane

2. As time goes forward, point moves along the curve in
accordance to the equation

3. F(x, y) = (f(x, y), g(x, y)) is a vector field.

4. At each point on curve, direction of motion is given by the
vector field

5. The vector field is tangent to the curve

6. The curve is tangent to the vector field
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Definition:A flow line of a vector field F is a differentiable function
g such that the velocity vector g’ at each point coincides with the

field vector F(g).


