
MATH 223: Multivariable Calculus

Class 32: Friday, May 2025



Notes on Assignment 28
Assignment 29
Green’sTheorem

Using MATLAB to Locate and Identify Extreme
Points



Rough Weights for Course Components

Exam1 20%

Exam 2 20%

Exam 3 20%

Final Exam 30%

Project 10 %

Final Exam
Thursday, May 15
7 PM – 10 PM



Location Problem

Due: Friday, May 9



Announcements

Today
More Green’s Theorem

Conservative Vector Fields



Divergence of a Vector Field
Definition div F = trace of F’, the Jacobi Matrix
In general, div F is a real -valued function of n

variables.



Curl of a Vector Field
Curl measures local tendency of a vector field and its flow lines to

circulate around some axis.
The curl of a vector field is itself a vector field.

Setting; F : R3 → R3 is our vector field
F = (F1, F2, F3) so F(x, yz) = (F1(x, y, z), F2(x, y, z), F3(x, y, z))

Formal Definition: curl F =
(
∂F3
∂y − ∂F2

∂z , ∂F1
∂z − ∂F3

∂x , ∂F2
∂x − ∂F1

∂y

)
Mnemonic Device:

curl F = det

 i j k.
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3


Expand along first row:

curl F =

∣∣∣∣ ∂
∂y

∂
∂z

F2 F3

∣∣∣∣ i− ∣∣∣∣ ∂
∂x

∂
∂z

F1 F3

∣∣∣∣ j+ ∣∣∣∣ ∂
∂x

∂
∂y

F1 F2

∣∣∣∣ k



Scalar Curl for Vector Fields in Plane
F = (F,G, 0) whereF (x, y) and G(x, y)are functions only of x and

y.
Then curl F = (0, 0, Gx − Fy)

Note: Curl and Conservative Vector Field
Suppose F = (F,G, 0) is gradient field with F = ∇f .

Then F = fx and G = fy
In this case, Curl F = (0, 0, fyx − fxy) = (0, 0, 0)

by Clairault’s Theorem on Equality of Mixed Partials.



Green’s Theorem in the Plane∫∫
D
curl F =

∫
γ
F

D is bounded plane region.
C = γ is piecewise smooth boundary of D

F and G are continuously differentiable functions defined on D
Then∫ ∫

(Gx − Fy)dxdy =

∫
γ
(F,G)

where γ is parametrized so it is traced once with D on the left.



Application of Green’s Theorem in the Plane∫∫
D curl F =

∫
γ F

Example F(x, y) = (0, x) implies curl| : F = 1− 0 = 1
Hence

∫∫
D curl F =

∫∫
D 1 = area of D

Green’s Theorem enables us to find the area of a planar region if
we can develop a parametrization of its boundary.

Example Consider the unit disk D of radius r centered at origin.
Let g(t) = (r cos t, r sin t), 0 ≤ t ≤ 2π

So g′(t) = (r sin t, r cos t)
and F(g(t)) = (0, r cos t)

Then F(g(t)) · g′(t) = r2 cos2 t dt
Thus area of D =

∫∫
D 1 =

∫∫
D curlF =

∫
γ F =

∫ 2π
0 r2 cos2 t dt∫ 2π

0 r2 cos2 t dt = r2
∫ 2π
0

1+cos 2t
2 dt = r2

2

[
t+ 1

2 sin 2t
]2=π

0
= πr2



Using Green’s Theorem

(1) Compute
∫∫

D curl F by using
∫
γ F

(2) Compute
∫
γ F by using

∫∫
D curl F



Using Green’s Theorem
Compute

∫
γ F by using

∫∫
D curl F

Example Let F(x, y) = ( 1y cos
x
y ,−

x
y2

cos x
y )

Compute
∫
γ F as

∫∫
D(Gx − Fy)

Here Gx = (− x
y2
)x cos

x
y +− x

y2
(cos x

y )x

=− 1
y2

cos x
y − x

y2
(− sin x

y )(
1
y )

=− 1
y2

cos x
y + x

y3
(sin x

y )

Similarly, Fy = − 1
y2

cos x
y + 1

y (− sin x
y )(

−x
y2

)

=− 1
y2

cos x
y + x

y3
(+ sin x

y )
So Gx − Fy = 0.
Hence

∫
γ F = 0



Example
Find∫

γ(1+10xy+y2)dx+(6xy+5x2)dy =
∫
γ(1+10xy+y2, 6xy+5x2)

where γ is boundary of the rectangle with vertices (0,0), (2,0),
(2,1), and (0,1).

Note: Direct Computation requires 4 integrals.
F (x, y) = 1 + 10xy + y2. G(x, y) = 6xy + 5x2

Fy = 10x+ 2y . Gx = 6y + 10x
Gx − Fy = 6y + 10x− 10x− 2y = 4t∫

γ F =
∫∫

D curl F =
∫ 2
0

∫ 1
0 4y dy dx =

∫ 2
0

[
2y2

]1
0
=

∫ 2
0 2dx = 4



George Green Mikhail Ostrogradsky
1793 – 1841 1801 – 1861



Gauss’ Theorem

Green:

∫∫
D
curl F =

∫
γ
F

If F = (F1, F2) then curl F = ∂F2
∂x − ∂F1

∂y

Apply Green’s Theorem to H = (−G,F ) where F = (F,G)∫
γ H =

∫∫
D curl (Fx − (−Gy)) =

∫∫
D(Fx +Gy) =

∫∫
D div F On

the other hand,
∫
γ H =

∫ b
a H · g’ =

∫ b
a (−G,F ) · (g′

1, g
′
2)∫ b

a (−G,F ) · (g′
1, g

′
2) =

∫ b
a −Gg

′
1 + Fg

′
2 =

∫ b
a (F,G) · (g′

2,−g
′
1)

Observe (g
′
2,−g

′
1) · (g

′
1, g

′
2) = g

′
1g

′
2 − g

′
1g

′
2 = 0

So (g
′
2,−g

′
1) is orthogonal to the tangent vector so it is a normal

vector N.
Thus

∫
γ H =

∫ b
a (F,G) · (g′

2,−g
′
1) =

∫ b
a (F,G) ·N =

∫
γ F ·N

Putting everything together:

∫∫
D

div F =

∫
γ
H =

∫
γ
F ·N



Proof of Green’s Theorem in an Elementary Case
Case : Boundary of D is made up of the graphs of two functions

defined on interval [a, b].

Ingredients:
Vector Field F = (F,G) = (F, 0) + (0, G)

γ1 = image of g1
γ2 = image of g2

Need to show
∫∫

D[Gx − Fy] =
∫
γ F =

∫
γ [(F, 0) + (0, G)]

Will show
∫∫

D −Fy =
∫
γ(F, 0)



Need to show
∫∫

D[Gx − Fy] =
∫
γ F =

∫
γ [(F, 0) + (0, G)]

Will show
∫∫

D −Fy =
∫
γ(F, 0)

We tackle the line integral first. Start with γ1

We can parametrize γ1 by a function g(t) = (t, ϕ(t)) for a ≤ t ≤ b

Then g′(t) = (1, ϕ
′
1(t))

Now (F, 0) · g′(t) = (F, 0) · (1, ϕ′
1(t)) = F = F (t, ϕ1(t))

so
∫
γ1
(F, 0) =

∫ b
a F (t, ϕ1(t)) dt



Now we take up γ2

Consider Parametrization of γ2 as g(t) = (t, ϕ2(t)), a ≤ t ≤ b.
This would actually traces out γ2 in the opposite direction. It is

the parametrization of −γ2
Again we have g′(t) = (1, ϕ

′
2) and (F, 0) · g′(t) = F (t, ϕ2(t))

so
∫
−γ2

(F, 0) =
∫ b
a F (t, ϕ2(t)).

Thus
∫
−γ2

(F, 0) = −
∫
γ2

= −
∫ b
a F (t, ϕ2(t)).

Finally,
∫
γ(F, 0) =

∫
γ1
(F, 0) +

∫
γ2
(F, 0)

=
∫ b
a F (t, ϕ1(t)) dt−

∫ b
a F (t, ϕ2(t)) dt∫

γ
(F, 0) =

∫ b

a
F (t, ϕ1(t))− F (t, ϕ2(t)) dt



Goal: Show
∫∫

D −Fy =
∫
γ(F, 0)

So far:
∫
γ(F, 0) =

∫ b
a F (t, ϕ1(t))− F (t, ϕ2(t)) dt

Now turn to the curl part:

∫∫
D
−Fy = −

∫∫
D
Fy =

∫ x=b

x=a

∫ y=ϕ2(x)

y=ϕ1(x)
−Fy(x, y) dy dx

= −
∫ b

a
[F (x, ϕ2(x))− F (x, ϕ1(x)] dx

= −
∫ b

a
[F (t, ϕ2(t))− F (t, ϕ1(t)] dt( let t = x)

=

∫ b

a
[F (t, ϕ1(t))− F (t, ϕ2(t)] dt



Conservative Vector Fields
F is continuously differentiable vector field in the plane

F : R2 → R2 with F(x, y) = (F (x, y), G(x, y)) where F and G are
each real-valued functions.

Here curl F is a real-valued function Gx − Fy

Green’s Theorem:
∫
D curl F =

∫
γ F

Three Important Properties of Vector Fields

A: F is CONSERVATIVE means F = ∇f for some f : R2 → R1

B: F is IRROTATIONAL means curl F = 0

C: F is PATH INDEPENDENT means
∫
γ1
F =

∫
γ2
F for any

paths γ1 and γ2 from a to b where a and b are any points in
the plane.

Major Goal: Show THESE PROPERTIES ARE EQUIVALENT



A implies B

A F is CONSERVATIVEmeans F = ∇f for some f : R2 → R1

B F is IRROTATIONAL means curl F = 0

Suppose F is Conservative
Then (F,G) = F = ∇f = (fx, fy) so fx = F and fy = G

Then Gx = fyx and Fy = fxy
so curl F = Gx − Fy = fyx − fxy = 0

by equality of mixed partials.



B implies C will follow from Green’s Theorem

B F is IRROTATIONAL means curl F = 0

C F is PATH INDEPENDENT means
∫
γ1
F =

∫
γ2
F for any

paths γ1 and γ2 from a to b where a and b are any points in
the plane.

Let a and b are any points in the plane and γ1 and γ2 two paths
from a to b. Then −γ1 runs from b to a

and γ = γ1 − γ2 is a loop that begins and ends at a
Let D be= the enclosed region.

By Green’s Theorem
∫
γ F =

∫∫
D curl F =

∫∫
D 0 = 0

Thus 0 =
∫
γ F =

∫
γ1−γ2

F =
∫
γ1
F−

∫
γ2
F

Hence
∫
γ2
F =

∫
γ1
F



C implies A

C F is PATH INDEPENDENT means
∫
γ1
F =

∫
γ2
F for any

paths γ1 and γ2 from a to b where a and b are any points in
the plane.

A F is CONSERVATIVE means F = ∇f for some f : R2 → R1


