
MATH 223: Multivariable Calculus

Class 33: Monday, May 5, 2025



Notes on Assignment 29
Assignment 30
Surface Integrals



Rough Weights for Course Components

Exam1 20%

Exam 2 20%

Exam 3 20%

Final Exam 30%

Project 10 %

Final Exam:
MATH 223A: Thursday, May 15 7 PM –10 PM



Announcements
Location Problem Due Friday, May 9

Today
More About Conservative Vector Fields

Surface Integrals



Conservative Vector Fields
F is continuously differentiable vector field in the plane

F : R2 → R2 with F(x, y) = (F (x, y), G(x, y)) where F and G are
each real-valued functions.

Here curl F is a real-valued function Gx − Fy

Green’s Theorem:
∫
D curl F =

∫
γ F

Three Important Properties of Vector Fields

A F is CONSERVATIVE means F = ∇f for some f : R2 → R1

B F is IRROTATIONAL means curl F = 0

C F is PATH INDEPENDENT means
∫
γ1
F =

∫
γ2
F for any

paths γ1 and γ2 from a to b where a and b are any points in
the plane.

Major Goal: Show THESE PROPERTIES ARE EQUIVALENT



A implies B

A F is CONSERVATIVEmeans F = ∇f for some f : R2 → R1

B F is IRROTATIONAL means curl F = 0

Suppose F is Conservative
Then (F,G) = F = ∇f = (fx, fy) so fx = F and fy = G

Thus Gx = fyx and Fy = fxy

so curl F = Gx − Fy = fyx − fxy = 0

by equality of mixed partials.



B implies C will follow from Green’s Theorem

B F is IRROTATIONAL means curl F = 0

C F is PATH INDEPENDENT means
∫
γ1
F =

∫
γ2
F for any

paths γ1 and γ2 from a to b where a and b are any points in
the plane.

Let a and b are any points in the plane and γ1 and γ2 two paths
from a to b. Then −γ1 runs from b to a

and γ = γ1 − γ2 is a loop that begins and ends at a
Let D be the enclosed region.

By Green’s Theorem
∫
γ F =

∫∫
D curl F =

∫∫
D 0 = 0

Thus 0 =
∫
γ F =

∫
γ1−γ2

F =
∫
γ1
F−

∫
γ2
F

Hence
∫
γ2
F =

∫
γ1
F



C implies A

C F is PATH INDEPENDENT means
∫
γ1
F =

∫
γ2
F for any

paths γ1 and γ2 from a to b where a and b are any points in
the plane.

A F is CONSERVATIVEmeans F = ∇f for some f : R2 → R1

Idea:
Fix x0 in Rn and let x be arbitrary point in Rn.

Let γ be a curve from x0 to x.
Then

∫
γ F will be a function of x whose gradient is F.

Theorem Let F be a continuous vector field defined in a
polygonally connected open set D of Rn. If the line integral

∫
γ F

is independent of piecewise smooth path γ from x0 to x in D, then
if f(x) =

∫
γ F, it is true that ∇f = F.



Example F(x, y) = (3x2 + y, ey + x)
Here F = (F,G) so F (x, y) = 3x2 + y,G(x, y) = ey + x

Hence Fy = 1, Gx = 1 so curl F = Gx − Fy = 0
Let’s build f so its gradient ∇f = (fx, fy) = (3x2 + y, ey + x)
We need fx = 3x2 + y so do ”partial integration with respect to

x”:
f(x) = x3 + yx+ g(y). [ Why is there g(y)? ]

Then fy = 0 + x+ g′(y) which should equal x+ ey so need
g′(y) = ey

which we can get by letting g(y) = ey.
Hence we can choose f(x, y) = x3 + yx+ ey + C.



Let’s build the potential function in a different way using the
theorem with F(x, y) = (3x2 + y, ey + x)

Pick x0 = (0, 0) and let x = (x, y) be an arbitrary point. Choose
the straight line between them as the path γ with parametrization

g(t) = (xt, yt), 0 ≤ t ≤ 1 so g′(t) = (x, y)
Then F(g(t)) = F (xt, yt) = (3x2t2 + yt, eyt + xt)
so F(g(t)) · g′(t) = (3x2t2 + yt, eyt + xt) · (x, y)

= 3x3t2 + xyt+ yeyt + xyt = 3x3t2 + 2xyt+ yeyt

Now
∫
γ F =

∫ 1
0 (3x

3t2 + 2xyt+ yeyt) dt

=
[
x3t3 + xyt2 + eyt

]t=1

t=0
= (x3 + xy + ey)− (0 + 0 + 1) = x3 + xy + ey − 1



Theorem Let F be a continuous vector field defined in a
polygonally connected open set D of Rn. If the line integral

∫
γ F

is independent of piecewise smooth path γ from x0 to x in D, then
if f(x) =

∫
γ F, it is true that ∇f = F.

f



Let g be parametrization of line segment from x to x+ tu so
g(v) = x+ vu, 0 ≤ v ≤ t and g′(v) = u

f(x+ tu)− f(x) =
∫ x+tu
x0

F−
∫ x
x0
F =

∫ x+tu
x F(x+ vu)

=
∫ t
0 F(x+ vu) · u dv



To find ∂f
∂xj

(x), let u be unit vector ej = (0, 0, .. . , 1, 0, 0. . . 0)

in the jth direction.

∂f

∂xj
(x) = lim

t→0

f(x+ tu)− f(x)

t

= lim
t→0

1

t

∫ t

0
F(x+ vu) · u dv

= lim
t→0

1

t

∫ t

0
F(x+ vej) · ej dv

But this last expression is the derivative of the integral with
respect to t evaluated at t = 0 which is F · ej = Fj(x) (Using

Fundamental Theorem of Calculus)



Symmetry of Jacobian Matrix for Conservative Vector Field

Let F = (F (x, y), G(x, y)) be a conservative vector field in the
plane which we can recognized by Gx = Fy

F’ =

(
Fx Fy

Gx Gy

)
Note symmetry of Jacobian Matrix.

How do things generalize to higher dimensions?



Example: F: R3 → R3 by

F (x, y, z) = (yz2 + sin y+3x2, xz2 + x cos y+ ez, 2xyz+ yez + 1
z )

F’ =

 6x z2 + cos y 2yz
z2 + cos y −x sin y 2xz + ez

2yz 2xz + ez 2xy + yez − 1
z2


To find f so that ∇f = F:

Step 1: integrate first component of F with respect to x:
f(x, y, z) = yz2x+ x sin y + x3 +G(y, z)

Step 2: Take derivative of trial f respect to y and set equal to
second component of F :

fy = z2x+ x cos y + 0 +Gy(y, z) must = xz2 + x cos y + ez

Need Gy(y, z) = ez so choose G(y, z) = ezy +H(z)
So far, f(x, y, z) = yz2x+ x sin y + x3 + ezy +H(z)

Step 3:Take derivative of trial f respect to z and set equal to
third component of F ;

fz(x, y, z) = 2xyz + 0 + 0 + ezy +H ′(z) must = 2xyz + ezy + 1
z

Need H ′(z) = 1
z so choose H(x) = ln |z|+ C Thus

f(x, y, z) = f(x, y, z) = yz2x+ x sin y + x3 + ezy + ln |z|+ C



Theorem If F is a conservative vector field on Rn and is
continuously differentiable, then the Jacobian matrix is symmetric.

Proof: Equality of mixed partials.



Theorem Suppose F is a continuously differentiable vector field on
Rn whose Jacobian matrix is symmetric. Then F is conservative



Integrating Vector Fields Over Surfaces

g(u, v) = [u, v,−2u2 − 3v2] g(u, v) = [u cos v, u sin v, v]



Smooth Curve γ Smooth Surface S

g : I in R1 → Rn g : D in R2 → R3

Length =
∫
I |g

′(t)| dt Area σ(S) =
∫∫

D |gu × gv|dudv

Mass =
∫
I µ(g(t))|g

′(t)| dt Mass =
∫∫

D µ dσ
Line Integral: Surface Integral∫

γ F =
∫
I F(g(t)) · g

′(t) dt
∫∫

S F =
∫∫

D F(g(u, v)) · (gu × gv)∫∫
S F =

∫∫
S F · dS =

∫∫
S F ·Ndσ

Φ(F, S) =
∫∫

S F is flux of F across S.



Surface Integral
Let g be a function from an interval [t0, t1] into Rn with image γ

and mu density at g(t).
Then Mass of Wire =

∫ t1
t0

µ(t)|g′(t)| dt
If µ ≡ 1, then mass = length of curve

∫ t1
t0

|g′(t)| dt
Generalize To Surfaces

Let D be region in plane and g : D → R3 with
g(u, v) = (g1, g2, g3) where each component function gi is

continuously differentiable.
There are two natural tangent vectors: gu = ∂g

∂u and gv = ∂g
∂v ,

These determine a tangent plane.
S is a Smooth Surface if these two vectors are linearly

independent.
Note that ∂g

∂u × ∂g
∂v is normal to the plane with

| ∂g∂u × ∂g
∂v | = | ∂g∂u ||

∂g
∂v | sin θ

= Area of Parallelogram Spanned by the Vectors



sin θ = h
|b| so h = |b| sin θ

Area of Parallelogram = (Base)(Height) = |a||b| sin θ
a = gu,b = gv

|gu × gv| = |gu||gv| sin θ



Surface Area
σ(S) =

∫∫
D | ∂g∂u × ∂g

∂v | dudv =
∫∫

D |gu × gv| dudv
If µ(g(u, v)) is density, then mass =∫∫
D µ dσ =

∫∫
D µ(g(u, v))|gu × gv| dudv

Plotting Parametrized Surface in Maple:
plot3d([g1(u, v), g2(u, v), g3(u, v)], u = ..., v = ...)



Area of a Spiral Ramp
g(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π



Area of a Spiral Ramp
g(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π

gu = (cos v, sin v, 0), gv = (−u sin v, u cos v, 1)

gu × gv = det

∣∣∣∣∣∣
i j k

cos v sin v 0
−u sin v u cos v 1

∣∣∣∣∣∣
=

(∣∣∣∣ sin v 0
u cos v 1

∣∣∣∣ ,− ∣∣∣∣ cos v 0
−u sin v 1

∣∣∣∣ , ∣∣∣∣ cos v sin v
−u sin v u cos v

∣∣∣∣)
= (sin v,− cos v, u)

Then |gu × gv| =
√
sin2 v + cos2 v + u2 =

√
1 + u2

Area =
∫ v=3π
v=0

∫ 1
u=0

√
1 + u2 du dv

If density is µ(x) = u, then
Mass =∫ v=3π

v=0

∫ u=1
u=0 u(1 + u2)1/2 du dv =

∫ v=3π
v=0

[
1
3(1 + u2)3/2

]1
0
dv

=
∫ v=3π
v=0

1
3 [2

3/2 − 13/2] dv = 3π 1
3 [2

3/2 − 1] = π[23/2 − 1]


