MATH 223: Multivariable Calculus

Class 34: Wednesday, May 7, 2025

Divergence Theorem

jgdidesz;J‘F-dS




Notes on Assignment 30
Assignment 31



Announcements

Location Problem Solutions Due Friday
OK To Use MATLAB

Course Response Forms
In Class Next Monday
Bring Laptop/SmartPhone

Final Exam
Thursday, May15: 7 — 10 PM



Integrating Vector Fields Over Surfaces




Integrating Vector Fields Over Surfaces

g(u,v) = [ucosv,usinv,v]

m]

=



Smooth Curve ~ Smooth Surface S
g:IinR' - R" g:DinR? - R?
Length = [, |¢'(t)| dt Area o(S) = [[p |gu x gv|dudv
Mass = [, u(g(t))|g'(t)] dt Mass = [[, udo
Line Integral Surface Integral
[, F=[;Fg®)-d@t)dt | [[sF= [[,F( ) - (9u X gv)

JIsF=[[sF-dS = [[¢F-Ndo

S) = [[4F is flux of F across S.



Surface Integral
Let g be a function from an interval [to, t1] into R™ with image ~y
and p density at g(t).
Then Mass of Wire = j;tol w(t)|g' (t)| dt
If =1, then mass = length of curve ftil lg'(¢)] dt
Generalize To Surfaces
Let D be region in plane and ¢ : D — R3 with
g(u,v) = (g1, g2, g3) where each component function g; is
continuously differentiable.

There are two natural tangent vectors: g, = % and g, = %,
These determine a tangent plane. S is a Smooth Surface if these
two vectors are linearly independent.

Note that g—z X % is normal to the plane with
192 x 92| = 1921 %8| sin
= Area of Parallelogram Spanned by the Vectors



a
sinf = % so h = |b|sinf
Area of Parallelogram = (Base)(Height) = |a||b]|sin 6
a=gy,b=g,
‘gu X gv’ = |gquv|Sin0



Surface Area

ffD|ag X ag|dudv = ffD |gu X gu| dudv

If u(g(u,v)) is density, then mass =
[prdo = [[pu(g(u,v))lgu x go| dudv

Plotting Parametrized Surface in M AT LAB:

[u,v] = meshgrid(0:.1:1,0:.1:2x pi);
sur f(u. * cos(v), u. * sin(v),v)

Plotting Parametrized Surface in Maple:

plot3d([g1l(u,v), g2(u,v), g3(u,v)],u = ...,v = ..

)



Area of a Spiral Ramp
g(u,v) = (ucosv,usinv,v),0 <u <1,0<v <3rm

=] 5 = = £ DA



Area of a Spiral Ramp
g(u,v) = (ucosv,usinv,v),0 <u<1,0<v < 3w
gu = (cosw,sinv,0), g, = (—usinv,ucosv, 1)
i j k
Ju X gy = det | cosw sinv 0
—usinv wucosv 1

uwcosv 1| |—wsinv 1|’ |—usinv wcoswv

- | )
— (sinv, — cos v, u)

Then |gy X gu| = \/sm v+ cos? v+ u? =1+ u?
Area = [ 3”];:0\/1+u2 du dv

sinv 0‘ ‘ Ccos v 0 COS v sinv

If density is = u, then Mass =
(x
I =T ;_0 w(l 4+ u?)? du dv = U_?”T[ (14w )3/2](1] dv

= [VT (232 — 132 dv = 37k [23/2 — 1] = n[23/2 - 1]



Integrating A Vector Field Over the Spiral Ramp




Integrating A Vector Field Over the Spiral Ramp
g(u,v) = (ucosv,usinv,v),0 <u<1,0<v<3r
gu = (cosw,sinv,0), g, = (—usinv,ucosv, 1)

u X gy = (sinwv, — cosv, u)

Suppose our vector field is F(x,y, z) = (22,0, 22)
So F(g(u,v)) = (u?cos®v,0,v?)

The set D = {(u,v) : 0<u<1,0<wv<3m}
We want [, F(g(u,v)) - (gu X g») which equals
f?m ful N [u2 cos? vsinv + uv2] du dv
—f?”r [3 cos? vsinv + 21)2‘1 0} dv =

fvgiro [:1)) cos? vsinv + v?] dv

_ | =cos?w W3 7" _ 33Pz -1 _ 2 9.3
_[T"‘F =g+t - =5t




Johann Carl Friedrich Gauss

Born: 30 April 30, 1777 in Brunswick, Duchy of Brunswick
Died: 23 February 23, 1855 in Gottingen, Hanover

Biography http://www.gap-
system.org/~history/Biographies/Gauss.html



Gauss’s Theorem aka Divergence Theorem
Planar Version: [, div F = f,y F-N

Three Dimensional Version
OR is 2-dimensional surface surrounding 3-dimensional region R

[ dvF= [, F-N



OR

Gauss’s Theorem
The Setting

Bounded Solid Region in R?

Finitely Many Piecewise Smooth, Closed Orientable Surfaces
Oriented by Unit Normals Pointed away from R
Continuously Differentiable Vector Field in R

The Theorem

In this setting / div FdV = / F-dS
OR

R



Example Verify Gauss's Theorem where R is solid cylinder of

radius a and height b with the z-axis as the axis of the cylinder and
F=(z,y,2)

/F-dS: F-dS+/ F-dS+/ F.dS
S Bottom Top Stide

m]

=



Cylinder of Radius @ and height b

Top

Bottom

st‘d5=fBottomF'd5+fTopF'd5+fsz~deF'dS

For [5.stom F - dS, unit normal is (0,0,-1)
Then (z,y,2) - (0,0,—1) = —z but =050 [, F-dS =0

For [r,, F - dS, unit normal is (0,0,1)
Then (z,y,2) - (0,0,+1) =z but z =bso [, F-dS
is b x area of top = bra?



Finally, [, F-dS

Vector Field F = (z,y, 2)
Surface: 22 + 92 =a%,0<2<b
g(u,v) = (acosu,asinu,v),0 <u<21,0<v<b



Finally, [g,, F-dS
g(u,v) = (acosu,asinu,v),0 <u<2r,0<v<b
gu = (—asinu,acosu,0), g, = (0,0,1)

i j k
Ju X gy = det |—asinu acosu 0
0 0 1

=(expanding along bottom row) (a cosu,asinu,0)
Thus [gy X go| = Va2cos2u+ a?sin?u+ 02 = a
Also F(g(u,v)) = (acosu,asinu,v) so F(g(u,v)) - (gu X gv) =
a?cos? u + a’sin®u + 0 = a?.
50 [giqo F-dS = [*_ o [27, a® du dv = 2ma®D
Putting it altogether: [ F-dS
= fBottomF'ds+fTopF'dS+fSideF'dS =04 7a’b + 2ma’b =
3ra?b




On The Other Hand, we compute [, div F
F=(zy,72)
dvF=1+1+1=3
The solid R is more easily described in polar coordinates
0<8<2r 0<r<a 0<z<h

/ div F = / / / div Frdrdzdf = / / / 3rdrdzdf
0= z2=0 Jr=0 z=0 Jr=0
a2 "3 a2 3 9
—]r odzdf = dzdf = bdo = 277 a“b
=0 2=0 =0 2=0 2 =0 2"

= 3a2b7r



Example: F = (e¥cos z, Va3 + 1sinz, 22 + y% + 3)
dvF=0+0+4+0=0
so fR div F = 0 for any region in R3.
Let S be graph of z = (1 — 22 — y2)el =" =3¥") for z > 0
oriented by outward pointing unit normal vector.

Finding fS F - do directly is impossible.



A Clever Way To Find fs F - do indirectly.

Cap the Surface with a Disk so New Surface Bounds a
3-Dimensional Region

Form closed surface S U S’ where S’ is the disk of radius 1
(22 +y?> =1) in z = 0 plane. Then [0, F= fsus F= [gF+ [ F

But by Gauss's Theorem, this integral equals 0.
Hence fS F= —fS, F

Now
JoF = = J(om 32 48)-(0.0.~1) = [ 22 + 4+ Bz dy

= 9220 f'r*l:()(r2 + 3) rdt d9 = %7‘[‘



Next Time:

Stokes’'s Theorem

/curIF:/ F
S 0S

S is a Surface in R?



Theorem: A continuously differentiable gradient field has a
symmetric Jacobian matrix.
Proof: If F is a gradient field, then F = V f for some real-valued
function f. Then F = (f,, fy) so the Jacobian matrix is

J= <fmm fzy)
fyz Jyy
By Continuity of Mixed Partials, f;, = fy, so J is symmetric. [

Theorem: If F is conservative, then its Jacobian is symmetric.



Theorem: If F is conservative, then its Jacobian is symmetric.

The converse (Symmetric Jacobian Implies Conservative) is
FALSE in general.

Example: Consider the vector field F(z,y) = (ﬁ, ﬁ)

defined for all (z,%) # (0,0) + = = - ='- - -

Then Jacobian = 22



—y T

Has a Symmetric Jacobian But Is Not Conservative!
If F were conservative, then the line integral of F around any
closed loop would be 0. Consider ~ the unit circle as a loop
running counterclockwise startlng and ending at (1,0).




_y T

~: unit circle as a loop running counterclockwise starting and
ending at (1.0).
We parametrize v by g(t) = (cost,sint), 0 so that
g'(t) = (—sint, cost) and

F(g(t)) =

—sint cost
cos?t +sin?t’ cos?t + sin?t

) = (—sint, cost)

F(g(t))-¢'(t) = (—sint,cost) - (—sint,cost) = sin®t 4 cos’t = 1
Thus [ F = [7" 1dt =27 #0.



What is Wrong the Vector Field

The Domain of the Vector Field

(Plane minus the Origin)
Is Not Simply Connected.

LY
]




Simple Connectedness
A set B is simply connected if every closed curve in B can be
continuously contracted to a point in such a way as to stay in B
during the contraction. More precisely,

Definition: An open set B is simply connected if every piecewise
smooth closed curve lying in B is the border of some piecewise
smooth orientable surface S lying in B, and with parameter
domain a disk in R2.

Theorem: Let F be a continuously differentiable vector field
defined on an open set B in R? or R3. If B is simply connected
and curl F is identically zero in B, then F is a gradient field in B ;
that is, there is a real-valued function f such that F =V f



not simply connected

-

(a) A simply connected domain

simply connected
thanks to single cut

¥
A

>

(b) A simply connected domain




Simply connected Non-simply connected

. .
a




¢



Theorem: Let F be a continuously differentiable vector field
defined on an open set B in R? or R3. If B is simply connected
and curl F is identically zero in B, then F is a gradient field in B ;
that is, there is a real-valued function f such that F =V f



