MATH 223: Multivariable Calculus

MULTIPLE INTEGRALS

Stokes Theorem

Class 35: Friday May 9, 2025

Notes on Assignment 31
Assignment 32
Self Evaluation
Peer Evaluation
MATH 223 Sticker

Announcements

- Course Response Forms Monday
 - Link: https://crfaccess.middlebury.edu/student/or go/crf
 - Available During Class Time Only
- ► Final Examination
 One Sheet of Notes

Final Exam

Next Thursday: 7 – 10 PM:

A - K: Warner 100

L - Z : Warner 010

Today:

Stokes' Theorem

$$\int_{S} \; \mathsf{curl} \; \mathbf{F} \; = \int_{\partial S} \mathbf{F} \;$$

S is a Surface in \mathbb{R}^3

Vector Field Theorems Plane

 $\mathbf{F}:\mathcal{R}^2\to\mathcal{R}^2$

 $D \ \mbox{is 2-dimensional} \\ C = \partial D \ \mbox{is 1-dimensional}$

Green – Ostrogradski Gauss (Divergence) $\int_D \operatorname{curl} \, \mathbf{F} = \int_C \mathbf{F} \qquad \int_D \operatorname{div} \, \mathbf{F} = \int_C \mathbf{F} \cdot \mathbf{N}$

Positive Orientation

Setting: Let D be a plane region bounded by a curve traced out in a counterclockwise direction by some parametrization $h: \mathcal{R}^1 \to \mathcal{R}^2$ for a < t < b.

Let S=g(D) be the image of D where $g:\mathcal{R}^2\to\mathcal{R}^3$ so that S is a 2-dimensional surface in 3-space whose border γ corresponds to the boundary of D.

We say that γ inherits the **positive orientation** with respect to S. The composition g(h(t)) describes the border of S. Denote by ∂S the **positively oriented border** of S.

Vector Field in \mathbb{R}^3 : $\mathbf{F}(\mathbf{x}) = (F(\mathbf{x}), G(\mathbf{x}), H(\mathbf{x})))$ where each of F, G, H is a real-valued function of 3 variables.

Curl
$$\mathbf{F}(\mathbf{x}) = (H_y(\mathbf{x}) - G_z(\mathbf{x}), F_z(\mathbf{x}) - H_x(\mathbf{x}), G_x(\mathbf{x}) - F_y(\mathbf{x}))$$

Stokes' Theorem: Let S be a piece of smooth surface in \mathbb{R}^3 , parametrized by a twice continuously differentiable function g. Assume that D, the parameter domain of g, is a finite union of simple regions bounded by a piecewise smooth curve. If \mathbf{F} is a continuously differentiable vector field defined on S, then

$$\int_{S} \mathsf{Curl} \; \mathbf{F} \cdot dS = \int_{\partial S} F \cdot d\mathbf{x}$$

where ∂S is the positively oriented border of S.

[Note: If $\mathbf{F} = (F,G,0)$ where F and F are independent of z, then Stokes' Theorem reduces to Green's Theorem. Thus Stokes generalizes Green.]

Example: Verify Stokes Theorem where

$$\mathbf{F}(x, y, z) = (z, x, y)$$

S: $g(u, v) = (u, v, 1 - u^2 - v^2), u^2 + v^2 \le 1.$

Example: Verify Stokes Theorem where

$$\mathbf{F}(x, y, z) = (z, x, y)$$

$$S: g(u,v) = (u,v,1-u^2-v^2), u^2+v^2 \le 1.$$

Parametrize ∂S by $(\cos t, \sin t, 0), 0 \le t \le 2\pi$.

Then
$$g(u,v)=(\cos t,\sin t,0)$$
 and $g'(u,v)=(-\sin t,\cos t,0)$

$$\mathbf{F}(g(u,v)) = (1 - u^2 - v^2, u, v) = (0, \cos t, \sin t)$$

$$\mathbf{F}(g(u,v)) \cdot g'(u,v) = (0,\cos t,\sin t) \cdot (-\sin t,\cos t,0) = \cos^2 t$$

$$\int_{\partial S} \mathbf{F} = \int_0^{2\pi} \cos^2 t \, dt = \int_0^{2\pi} \frac{1 + \cos 2t}{2} \, dt = \frac{1}{2} \left[t + \frac{\sin 2t}{2} \right]_0^{2\pi} = \pi$$

Now
$$\int_S \mbox{ curl } {\bf F} = \int_S \mbox{ curl } (z,x,y)$$

$$\operatorname{curl} \mathbf{F} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ z & x & y \end{pmatrix} = (1 - 0, -(0 - 1), 1 - 0) = (1, 1, 1)$$

Thus we want to integrate (1,1,1) over S. Here $g(u,v)=(u,v,1-u^2-v^2)$ so $g_u=(1,0,-2u),g_v=(0,1,-2v)$ and $g_u\times g_v=(2u,2v,1)$ [work it out]

$$\int_{S} \text{ curl } \mathbf{F} = \iint_{D} (1,1,1) \cdot (2u,2v,1) \, du \, dv = \iint_{D} 2u + 2v + 1 \, du \, dv$$

which equals (using polar coordinates)

$$\int_{r=0}^{r=1} \int_{\theta=0}^{\theta=2\pi} (2r\cos\theta + 2r\sin\theta + 1) r \, dr \, d\theta$$

$$\int_{S} \ \mathrm{curl} \ \mathbf{F} = \iint_{D} (1,1,1) \cdot (2u,2v,1) \, du \, dv = \iint_{D} 2u + 2v + 1 \, du \, dv$$

which equals (using polar coordinates)

$$\int_{r=0}^{r=1} \int_{\theta=0}^{\theta=2\pi} (2r\cos\theta + 2r\sin\theta + 1) r dr d\theta$$

$$= \int_{r=0}^{r=1} \left[2r^2 \sin\theta - 2r^2 \cos\theta + r\theta \right]_{\theta=0}^{\theta=2\pi} dr$$

$$= \int_{r=0}^{r=1} 2\pi r dr = 2\pi \left[\frac{r^2}{2} \right]_{\theta=0}^{r=1} = \pi$$

Consequences of Stokes' Theorem

$$\int_{S} \; \mathsf{curl} \; \mathbf{F} \; = \int_{\partial S} \mathbf{F} \;$$

S is a Surface in \mathbb{R}^3

George Gabriel Stokes August 13, 1819 – February 1, 1903 Stokes Biography

Interpretation of Curl

- (1) The direction of curl $\mathbf{F}(\mathbf{x})$ is the axis about which \mathbf{F} rotates most rapidly at \mathbf{x} . The length of curl $\mathbf{F}(\mathbf{x})$ is the maximum rate of rotation at \mathbf{x} .
- (2) Maxwell's Equations: curl $\mathbf{B} = \mathbf{I}$ where \mathbf{I} is the vector current flow in an electrical conductor and \mathbf{B} is the magnetic field which the current flow induces in the surrounding space.

Stokes' Theorem then yields **Ampere's Law**:

$$\int_{S} \mathbf{I} \cdot d\mathbf{S} = \int_{\partial S} \mathbf{B} \cdot d\mathbf{x},$$

the total current flux across S is the circulation of the magnetic field around the border curve ∂S that encircles the conductor.

Definitions: A vector field \mathbf{F} is divergent-free if div $\mathbf{F}=0$ and \mathbf{F} is curl-free if curl $\mathbf{F}=\mathbf{0}$.

James Clerk Maxwell (June 13, 1831 – November 5, 1879) Maxwell Biography

Name	Equation	
	Integral form	Differential form
Faraday's law of induction	$\oint_{c} \vec{E} \cdot d\vec{l} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$	$\nabla \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$
Ampère-Maxwell law	$\oint_{c} \overrightarrow{H} \cdot d\overrightarrow{I} = \iint_{S} \overrightarrow{J} \cdot d\overrightarrow{S} + \iint_{S} \frac{\partial \overrightarrow{D}}{\partial t} \cdot d\overrightarrow{S}$	$\nabla \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}$
Gauss' electric law	$\iint_{S} \overrightarrow{D} \cdot d\overrightarrow{S} = \iiint_{V} \rho dV$	$\nabla \cdot \overrightarrow{D} = \rho$
Gauss' magnetic law	$\iint_{S} \vec{B} \cdot d\vec{S} = 0$	$\nabla \cdot \vec{B} = 0$

<u>Theorem:</u> A continuously differentiable gradient field has a symmetric Jacobian matrix.

<u>Proof</u>: If ${\bf F}$ is a gradient field, then ${\bf F}=\nabla f$ for some real-valued function f. Then ${\bf F}=(f_x,f_y)$ so the Jacobian matrix is

$$J = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$

By Continuity of Mixed Partials, $f_{xy}=f_{yx}$ so J is symmetric. \square

$$\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

Has a Symmetric Jacobian But Is Not Conservative! If \mathbf{F} were conservative, then the line integral of \mathbf{F} around any closed loop would be 0. Consider γ the unit circle as a loop running counterclockwise starting and ending at (1,0).

$$\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

 γ : unit circle as a loop running counterclockwise starting and ending at (1.0).

We parametrize γ by $g(t)=(\cos t,\sin t),0\pi$ so that $g'(t)=(-\sin t,\cos t)$ and

$$\mathbf{F}(g(t)) = \left(\frac{-\sin t}{\cos^2 t + \sin^2 t}, \frac{\cos t}{\cos^2 t + \sin^2 t}\right) = (-\sin t, \cos t)$$

$$\mathbf{F}(g(t)) \cdot g'(t) = (-\sin t, \cos t) \cdot (-\sin t, \cos t) = \sin^2 t + \cos^2 t = 1$$

$$\mathsf{Thus} \ \int_{\gamma} \mathbf{F} = \int_{0}^{2\pi} 1 \ dt = 2\pi \neq 0.$$

What is Wrong the Vector Field

$$\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)?$$

The Domain of the Vector Field

(Plane minus the Origin) Is Not Simply Connected.

Simple Connectedness

A set B is **simply connected** if every closed curve in B can be continuously contracted to a point in such a way as to stay in B during the contraction. More precisely,

Definition: An open set B is **simply connected** if every piecewise smooth closed curve lying in B is the border of some piecewise smooth orientable surface S lying in B, and with parameter domain a disk in \mathcal{R}^2 .

Theorem: Let ${\bf F}$ be a continuously differentiable vector field defined on an open set B in ${\cal R}^2$ or ${\cal R}^3$. If B is simply connected and curl ${\bf F}$ is identically zero in B, then ${\bf F}$ is a gradient field in B; that is, there is a real-valued function f such that ${\bf F}=\nabla f$

Theorem: Let \mathbf{F} be a continuously differentiable vector field defined on an open set B in \mathbb{R}^2 or \mathbb{R}^3 . If B is simply connected and curl \mathbf{F} is identically zero in B, then \mathbf{F} is a gradient field in B; that is, there is a real-valued function f such that $\mathbf{F} = \nabla f$

Theorem: Let ${\bf F}$ be a continuously differentiable vector field defined on an open set B in ${\cal R}^2$ or ${\cal R}^3$. If B is simply connected and curl ${\bf F}$ is identically zero in B, then ${\bf F}$ is a gradient field in B; that is, there is a real-valued function f such that ${\bf F}=\nabla f$

Proof: Let γ be a piecewise smooth closed loop in B. Because B is simply connected, there is a piecewise smooth surface S of which γ is the boundary.

By Stokes' Theorem

$$\int_{\gamma} \mathbf{F} = \int_{S} \text{ curl } \mathbf{F} = \int_{S} \mathbf{0} = 0.$$

Thus F is path-independent and hence conservative.

Theorem: Let ${\bf F}$ be a continuously differentiable vector field defined on an open set B in ${\cal R}^2$ or ${\cal R}^3$. If B is simply connected and curl ${\bf F}$ is identically zero in B, then ${\bf F}$ is a gradient field in B; that is, there is a real-valued function f such that ${\bf F}=\nabla f$

Theorem: If the Jacobian matrix of a continuously differentiable vector field on a simply connected set is symmetric, then the vector field is conservative.

Proof: Suppose
$$\mathbf{F}$$
 is a vector field in \mathcal{R}^3 with
$$\mathbf{F}(\mathbf{x}) = (F(\mathbf{x}), G(\mathbf{x}), H(\mathbf{x})) \text{ where } \mathbf{x} = (x, y, z)$$

$$Jacobian = \begin{pmatrix} F_x & F_y & F_z \\ G_x & G_y & G_z \\ H_x & H_y & H_z \end{pmatrix} \text{ with } F_z = H_x$$

$$G_z = H_y$$
curl $\mathbf{F} = (H_y - G_z, H_x - F_z, G_x - F_y) = (0, 0, 0) = \mathbf{0}$