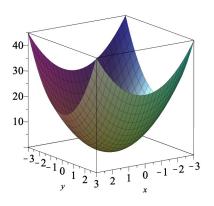
MATH 223: Multivariable Calculus



Class 5: February 19, 2025

Notes on Assignment 3
Assignment 4
Simple Animation in MATLAB

Simple Animation in MATLAB¶

1

Animate Strange Curve ($\cos 3t$, $\sin 5t$), $0 \le t \le 2\pi$

Animate Helix (cos t, sin t, t) for $0 \le t \le 6\pi$

Major Topic: Real-Valued Functions of Vectors

$$f: \mathcal{R}^n \to \mathcal{R}^1$$

(I) Defining and Using Derivatives
Chapters 3 – 5

(II) Integrals Chapters 6 – 7

Initial Focus: Geometry of Such Functions Some Useful Pictures

Some Useful Pictures

(A)
$$f: \mathbb{R}^2 \to \mathbb{R}^1$$
 $z = f(x, y)$

Image: Interval of Real Numbers

Domain: Region in Plane

Graph: Surface in \mathbb{R}^3

In General, graph $f: \mathbb{R}^n \to \mathbb{R}^1$ is the set of points of the form $(\mathbf{x}, f(\mathbf{x}))$, an *n*-dimensional surface in n+1-dimensional space.

(B) Contours

Level Curves for $f: \mathbb{R}^2 \to .\mathbb{R}^1$

Level Surfaces for $f: \mathbb{R}^3 \to .\mathbb{R}^1$

C) Cross-Sections

Fix one variable

Example:
$$f(x, y) = 2x^2 + 3y^2$$
 or $z = 2x^2 + 3y^2$.
Observations:

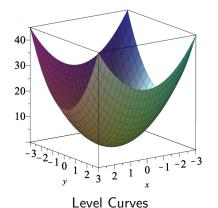
- 1. $z \ge 0$ for all x, y; z =only at (0,0)
- 2. Hold z fixed, say. $z = z_0 > 0$

$$2x^2 + 3y^2 = z_0$$

3. Hold x fixed: $x = x_0$

$$2x_0^2 + 3y^2 = z$$

Parabola in (y, z)-plane



Given: output *k* (some constant)
Find: All inputs Which Produce That Output

Examples
Isotherms
Isobars
Isoclines
Indifference Curves

FUNDAMENTAL DIFFERENCE BETWEEN DOMAIN BEING SUBSET OF \mathcal{R}^1 AND SUBSET OF \mathcal{R}^n , n > 1:

Implications for Continuity, Derivative, Integral

These all depend on **LIMIT**:

$$\lim_{x \to a} f(x) \qquad \lim_{x \to a} f(x)$$

$$\mathcal{R}^1 \qquad \mathcal{R}^n$$

2 ways to approach Infinitely Many Ways

Example:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + 2y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Approach along line y = mx:

$$f(x, mx) = \frac{x(mx)}{x^2 + 2(mx)^2} = \frac{mx^2}{x^2 + 2m^2x^2} = \frac{mx^2}{x^2(1 + 2m^2)} = \frac{m}{1 + 2m^2}$$

$$\frac{m}{1 + \frac{m}{1 + 2m^2}}$$

$$\frac{1}{1 + 2m^2} = \frac{1}{3}$$

$$2 \qquad \frac{2}{1 + 8} = \frac{2}{9}$$

$$-1 \qquad \frac{-1}{1 + 2} = -\frac{1}{2}$$

What are the possible values of
$$g(m) = \frac{m}{1+2m^2}$$
? $g'(m) = \frac{1-2m^2}{(1+2m^2)^2}$ and $g''(m) = \frac{4m(2m^2-3)}{(1+2m^2)^3}$

- ▶ $g(m) \rightarrow 0$ as $m \rightarrow \pm \infty$
- g'(m) > 0 for $\sqrt{2}/2 \le m \le \sqrt{2}/2$
- Point of Inflection at $\left(-\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}\right)$

