VECTORS IN TWO DIMENSIONS

scalar quantity	scalar	directed line segment
initial point	terminal point	magnitude
equivalent vectors	equal vectors	velocity vector
force vector	displacement	sum of vectors
resultant force	scalar multiple	position vector
components of vector	$a = (a_1, a_2)$	
Notation, \mathbb{D}^2 is the set of	fall vootore (xy) where x	and ware real numbers

Notation: \mathbb{R}^2 is the set of all vectors (*x*,*y*) where *x* and *y* are real numbers.

Theorem: $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a} + (-\mathbf{a}) = (cd)\mathbf{a} = c(d)$	The follow protect \mathbf{a} 0 $d\mathbf{a}) = d(c\mathbf{a})$	operties hold for vectors \mathbf{a} $\mathbf{a} + (\mathbf{b} + \mathbf{w}) = (\mathbf{a} + \mathbf{b}) + \mathbf{w}$ $c (\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$ $1\mathbf{a} = \mathbf{a}$	b , w and all scalars c and d : a + 0 = a $(c+d)\mathbf{a} = c\mathbf{a} + d$ $0\mathbf{a} = 0 = c0$	a
Definition:	The zero vecto and the negati	or 0 is O = (0,0), ve of a is - a = - (a_1, a_2)	$=(-a_1, -a_2)$	
Definition:	(Scalar Multiple	of a Vector): $c(a_1,a_2) =$	$= (ca_1, ca_2)$	
Definition:	(Addition of Vec	ctors): $(a_1, a_2) + (b_1, b_2)$	$=(a_1+b_1,a_2+b_2)$	
Definition:	The magnitude	$ \mathbf{a} $ of the vector $\mathbf{a} = (a_1, a_2)$	$ a_2 $ is $ \mathbf{a} = \sqrt{a_1^2 + a_2^2}$	

Definition: If $\mathbf{a} = (a_1, a_2)$ and $\mathbf{b} = (b_1, b_2)$, the **difference a - b** is $\mathbf{a} + (-\mathbf{b})$.

Theorem: If $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ are any two points, then the vector **a** in \mathbb{R}^2 that corresponds to P_1P_2 is $\mathbf{a} = (x_2 - x_1, y_2 - y_1)$.

Definition: Nonzero vectors **a** and **b** in \mathbb{R}^2 have (i) the **same direction** if **b** = c**a** for some positive scalar c > 0. (ii) the **opposite direction** if **b** = c**a** for some negative scalar c < 0. The vectors **a** and **b** are **parallel** if **b** = c**a** for some scalar c

Theorem: If **a** is a vector and c is a scalar, then $|| c \mathbf{a} || = |c| || \mathbf{a} ||$

Definition: $\mathbf{i} = (1,0), \mathbf{j} = (0,1)$

Theorem: If $\mathbf{a} = (a_1, a_2)$, then $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}$

Definition: If $\mathbf{a} = (a_1, a_2)$, then a_1 is the **horizontal component** of \mathbf{a} and a_2 is the **vertical component** of \mathbf{a} .

VECTORS IN THREE DIMENSIONS

ordered triplexy-planex- coordinateequality of triplesyz-planey- coordinateoriginxz-planez-coordinateright-handed coordinaterectangular coordinatexyz-coordinate systemsystemsystemsystem

Distance Formula: The distance between $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Midpoint Formula: The midpoint of the line segment from $P_1(x_1, y_1, z_1)$ to $P_2(x_2, y_2, z_2)$ is

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

Definition: The **graph of an equation** in three variables x, y, and z is the set of all points P(a,b,c) in a rectangular coordinate system such that the ordered triple (a,b,c) is a solution of the equation. The graph of such an equation is called a **surface**.

Theorem: An equation of a sphere of radius r and center $P_0(x_0, y_0, z_0)$ is

$$(x - x_0)^2 + (y - y)^2 + (z - z_0)^2 = r^2$$

Definition: \mathbb{R}^3 is the set of all vectors (x, y, z) where x, y and z are real numbers.

Definition: In \mathbb{R}^3 , $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, and $\mathbf{k} = (0,0,1)$.

Note: We may write the vector $\mathbf{a} = (a_1, a_2, a_3)$ as $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$