Sections 1.3 and 1.4: The Dot and Cross Products

A Scalar Product and a Vector Product

The Dot and Cross Products

Both take in two vectors, \bar{a} and \bar{b} .

- $\bar{a} \cdot \bar{b}$ is a scalar.
- $\bar{a} \times \bar{b}$ is a vector.

Each has geometric interpretations.

The Dot Product

If
$$\bar{a} = (a_1, a_2, a_3)$$

and
$$\bar{b} = (b_1, b_2, b_3),$$

define
$$\bar{a} \cdot \bar{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$
.

This definition works for vectors in \mathbb{R}^n for any n:

If
$$\bar{a} = (a_1, ..., a_n)$$
 and $\bar{b} = (b_1, ..., b_n)$,

then $\bar{a} \cdot \bar{b} = a_1 b_1 + \dots + a_n b_n$.

Algebraic Properties of the Dot Product

Suppose that \bar{a}, \bar{b} , and \bar{c} are vectors and $k \in \mathbb{R}$ is a scalar. Then

• $\bar{a} \cdot \bar{a} \ge 0$, and $\bar{a} \cdot \bar{a} = 0$ only when $\bar{a} = 0$. (Positive-definiteness)

• $\bar{a} \cdot \bar{b} = \bar{b} \cdot \bar{a}$. (Symmetry)

•
$$\bar{a} \cdot (\bar{b} + \bar{c}) = \bar{a} \cdot \bar{b} + \bar{a} \cdot \bar{c}$$
. (Linearity)

•
$$(k\bar{a}) \cdot \bar{b} = k(\bar{a} \cdot \bar{b}) = \bar{a} \cdot (k\bar{b})$$
. (Linearity)

Note that symmetry implies that the dot product is linear in the first term as well. Geometric Properties of the Dot Product

The length, or norm, of a vector \bar{a} is given by

$$\|\bar{a}\| = \sqrt{\bar{a} \cdot \bar{a}} = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

It's the Pythagorean Theorem:

A unit vector is a vector \bar{a} such that $\|\bar{a}\| = 1$.

If $\bar{a} \neq \bar{0}$, then

$$\bar{u} = \frac{1}{\|\bar{a}\|}\bar{a}$$

is a unit vector.

Scaling a nonzero vector \bar{a} to make it a unit vector is called normalizing \bar{a} .

The dot product can be used to detect angles between vectors.

Theorem If \bar{a} and \bar{b} are vectors in \mathbb{R}^2 or \mathbb{R}^3 , then $\bar{a} \cdot \bar{b} = \|\bar{a}\| \|\bar{b}\| \cos \theta$ where $0 \le \theta \le \pi$.

Important note: Since $\cos \frac{\pi}{2} = 0$, $\bar{a} \perp \bar{b}$ if and only if $\bar{a} \cdot \bar{b} = 0$.

The Dot Product and Projections

We can use the dot product to calculate the projection of one vector onto another.

For any vectors \bar{a} and \bar{b} such that $\bar{a} \neq \bar{0}$,

$$\operatorname{proj}_{\bar{a}}\bar{b} = \left(\frac{\bar{a}\cdot\bar{b}}{\|\bar{a}\|}\right)\frac{\bar{a}}{\|\bar{a}\|} = \left(\frac{\bar{a}\cdot\bar{b}}{\bar{a}\cdot\bar{a}}\right)\bar{a}.$$

Why?

$$\operatorname{proj}_{\bar{a}}\bar{b} = \left(\frac{\bar{a} \cdot \bar{b}}{\|\bar{a}\|}\right) \frac{\bar{a}}{\|\bar{a}\|}$$

•
$$\frac{\bar{a}}{\|\bar{a}\|}$$
 is a unit vector in the direction of \bar{a} .

• We need to show that $\frac{\bar{a}\cdot\bar{b}}{\|\bar{a}\|}$ gives the length of $\operatorname{proj}_{\bar{a}}\bar{b}$.

Let θ be the angle between \bar{a} and \bar{b} .

From trig class,

$$\|\bar{b}\|\cos\theta = \text{length of } \text{proj}_{\bar{a}}\bar{b}.$$

But we also know that

$$\bar{a} \cdot \bar{b} = \|\bar{a}\| \|\bar{b}\| \cos \theta,$$

 \mathbf{SO}

length of
$$\operatorname{proj}_{\bar{a}}\bar{b} = \frac{\bar{a}\cdot\bar{b}}{\|\bar{a}\|}$$

This product is defined only for vectors in \mathbb{R}^3 .

Given \bar{a} and \bar{b} , to define $\bar{a} \times \bar{b}$, we need to define its length and direction.

Length:

 $\|\bar{a} \times \bar{b}\| =$ area of parallelogram spanned by \bar{a} and \bar{b} .

Note:

- If \bar{a} or $\bar{b} = \bar{0}$, or if $\bar{a} \parallel \bar{b}$, then $\bar{a} \times \bar{b} = \bar{0}$.
- By trig, $\|\bar{a} \times \bar{b}\| = \|\bar{a}\| \|\bar{b}\| \sin \theta$.

Direction:

$\bar{a} \times \bar{b}$ is orthogonal to both \bar{a} and \bar{b} , and

 $\{\bar{a},\bar{b},\bar{a}\times\bar{b}\}$ forms a right-handed system.

These two pieces of information completely determine the direction of $\bar{a} \times \bar{b}$.

Example

Cross product of standard basis vectors.

By properties of cross product

$$\bar{i} \times \bar{j} = \bar{k}.$$

In general

Algebraic Properties of the Cross Product

Suppose that $\bar{a}, \bar{b}, \bar{c}$ are vectors and k is a scalar. Then

•
$$\bar{a} \times \bar{b} = -\bar{b} \times \bar{a}.$$

•
$$\bar{a} \times (\bar{b} + \bar{c}) = \bar{a} \times \bar{b} + \bar{a} \times \bar{c}.$$

•
$$(\bar{a} + \bar{b}) \times \bar{c} = \bar{a} \times \bar{c} + \bar{b} \times \bar{c}.$$

•
$$(k\bar{a}) \times \bar{b} = k(\bar{a} \times \bar{b}) = \bar{a} \times (k\bar{b}).$$

These properties can be proven using the geometric definition of the cross product. Computing the cross product is a lot like taking a determinant.

If
$$\bar{a} = (a_1, a_2, a_3)$$
 and $b = (b_1, b_2, b_3)$, then

$$\bar{a} \times \bar{b} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2 b_3 - a_3 b_2) \bar{i} - (a_1 b_3 - a_3 b_1) \bar{j} + (a_1 b_2 - a_2 b_1) \bar{k}.$$

Example

 $\overline{j} \times \overline{i}$

$$\bar{j} \times \bar{i} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = (0-0)\bar{i} - (0-0)\bar{j} + (0-1)\bar{k} = -\bar{k}.$$

Consider the parallelepiped:

volume = (area base)(height)
=
$$\|\bar{a} \times \bar{b}\| \|\bar{c}\| |\cos \phi|$$
 (by trig)
= $|(\bar{a} \times \bar{b}) \cdot \bar{c}|$.

Since the volume of the parallelepiped is constant, the absolute value of the scalar triple product $(\bar{a} \times \bar{b}) \cdot \bar{c}$ is invariant under rearrangement.