
Sections 1.3 and 1.4:
The Dot and Cross Products

A Scalar Product and a Vector Product



The Dot and Cross Products

Both take in two vectors, ā and b̄.

• ā · b̄ is a scalar.

• ā× b̄ is a vector.

Each has geometric interpretations.



The Dot Product

If ā = (a1, a2, a3)

and b̄ = (b1, b2, b3),

define ā · b̄ = a1b1 + a2b2 + a3b3.

This definition works for vectors in Rn for any n:

If ā = (a1, . . . , an) and b̄ = (b1, . . . , bn),

then ā · b̄ = a1b1 + · · ·+ anbn.



Algebraic Properties of the Dot Product

Suppose that ā, b̄, and c̄ are vectors and k ∈ R is a scalar. Then

• ā · ā ≥ 0, and ā · ā = 0 only when ā = 0.
(Positive-definiteness)

• ā · b̄ = b̄ · ā. (Symmetry)

• ā · (b̄+ c̄) = ā · b̄+ ā · c̄. (Linearity)

• (kā) · b̄ = k(ā · b̄) = ā · (kb̄). (Linearity)

Note that symmetry implies that the dot product is linear in
the first term as well.



Geometric Properties of the Dot Product

The length, or norm, of a vector ā is given by

‖ā‖ =
√
ā · ā =

√
a2

1 + a2
2 + a2

3.

It’s the Pythagorean Theorem:



A unit vector is a vector ā such that ‖ā‖ = 1.

If ā 6= 0̄, then

ū =
1

‖ā‖
ā

is a unit vector.

Scaling a nonzero vector ā to make it a unit vector is called
normalizing ā.



The dot product can be used to detect angles between vectors.

Theorem

If ā and b̄ are vectors in R2 or R3, then

ā · b̄ = ‖ā‖‖b̄‖ cos θ

where 0 ≤ θ ≤ π.

Important note: Since cos π2 = 0, ā ⊥ b̄ if and only if ā · b̄ = 0.



The Dot Product and Projections

We can use the dot product to calculate the projection of one
vector onto another.

For any vectors ā and b̄ such that ā 6= 0̄,

projāb̄ =

(
ā · b̄
‖ā‖

)
ā

‖ā‖
=

(
ā · b̄
ā · ā

)
ā.



Why?

projāb̄ =

(
ā · b̄
‖ā‖

)
ā

‖ā‖

• ā
‖ā‖ is a unit vector in the direction of ā.

• We need to show that ā·b̄
‖ā‖ gives the length of projāb̄.



Let θ be the angle between ā and b̄.

From trig class,

‖b̄‖ cos θ = length of projāb̄.

But we also know that

ā · b̄ = ‖ā‖‖b̄‖ cos θ,

so

length of projāb̄ =
ā · b̄
‖ā‖

.



The Cross Product

This product is defined only for vectors in R3.

Given ā and b̄, to define ā× b̄, we need to define its

length and direction.



Length:

‖ā× b̄‖ = area of parallelogram spanned by ā and b̄.

Note:

• If ā or b̄ = 0̄, or if ā ‖ b̄, then ā× b̄ = 0̄.

• By trig, ‖ā× b̄‖ = ‖ā‖‖b̄‖ sin θ.



Direction:

ā× b̄ is orthogonal to both ā and b̄, and

{ā, b̄, ā× b̄} forms a right-handed system.

These two pieces of information completely determine the
direction of ā× b̄.



Example

Cross product of standard basis vectors.

By properties of cross product

ī× j̄ = k̄.

In general



Algebraic Properties of the Cross Product

Suppose that ā, b̄, c̄ are vectors and k is a scalar. Then

• ā× b̄ = −b̄× ā.

• ā× (b̄+ c̄) = ā× b̄+ ā× c̄.

• (ā+ b̄)× c̄ = ā× c̄+ b̄× c̄.

• (kā)× b̄ = k(ā× b̄) = ā× (kb̄).

These properties can be proven using the geometric definition of
the cross product.



Computing the cross product is a lot like taking a determinant.

If ā = (a1, a2, a3) and b̄ = (b1, b2, b3), then

ā×b̄ =

∣∣∣∣∣∣
ī j̄ k̄
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = (a2b3−a3b2)̄i−(a1b3−a3b1)j̄+(a1b2−a2b1)k̄.

Example

j̄ × ī

j̄ × ī =

∣∣∣∣∣∣
ī j̄ k̄
0 1 0
1 0 0

∣∣∣∣∣∣ = (0− 0)̄i− (0− 0)j̄ + (0− 1)k̄ = −k̄.



Consider the parallelepiped:

Then

volume = (area base)(height)

= ‖ā× b̄‖‖c̄‖| cosφ| (by trig)

= |(ā× b̄) · c̄|.

Since the volume of the parallelepiped is constant, the absolute
value of the scalar triple product (ā× b̄) · c̄ is invariant under
rearrangement.


