The Second Derivative Test

(for $f : \mathbb{R}^2 \to \mathbb{R}$)

Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is of class C^2 . Taylor's theorem says that for \bar{x} near \bar{a} ,

$$f(\bar{x}) \approx f(\bar{a}) + Df(\bar{a})(\bar{x} - \bar{a}) + \frac{1}{2}(\bar{x} - \bar{a})^{\mathrm{T}}Hf(\bar{a})(\bar{x} - \bar{a})$$

where

$$Hf(\bar{a}) = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix}.$$

If \bar{a} is a critical point, then $Df(\bar{a}) = \begin{bmatrix} 0 & 0 \end{bmatrix}$ so

$$f(\bar{x}) \approx f(\bar{a}) + \frac{1}{2}(\bar{x} - \bar{a})^{\mathrm{T}} H f(\bar{a})(\bar{x} - \bar{a}).$$

By choosing \bar{x} close enough to \bar{a} , we can make the difference between these actual values as small as we like.

Thus near \bar{a} , the difference between $f(\bar{x})$ and $f(\bar{a})$ is determined by the sign of

$$(\bar{x}-\bar{a})^{\mathrm{T}}Hf(\bar{a})(\bar{x}-\bar{a})$$

Note that $\bar{x} - \bar{a}$ can be thought of as a vector based at \bar{a} .

Letting $\bar{h} = \bar{x} - \bar{a}$, we have

$$f(\bar{x}) \approx f(\bar{a}) + \frac{1}{2} \underbrace{\bar{h}^{\mathrm{T}} H f(\bar{a}) \bar{h}}_{\circledast}.$$

Thus, f has:

- a local minimum at \bar{a} if $\circledast > 0$ for all $\bar{h} \neq \bar{0}$,
- a local maximum at \bar{a} if $\circledast < 0$ for all $\bar{h} \neq \bar{0}$,
- a saddle point at \bar{a} if $\circledast > 0$ for some \bar{h} and $\circledast < 0$ for other \bar{h} .

Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is of class C^2 and $Df(\bar{a}) = \begin{bmatrix} 0 & 0 \end{bmatrix}$.

The second derivative test says that

- f has a local minimum at \bar{a} if det $Hf(\bar{a}) > 0$ and $f_{xx} > 0$, (this will imply $\circledast > 0$ for all $\bar{h} \neq \bar{0}$)
- f has a local maximum at \bar{a} if det $Hf(\bar{a}) > 0$ and $f_{xx} < 0$, (this will imply $\circledast < 0$ for all $\bar{h} \neq \bar{0}$)
- f has a saddle point at ā if det Hf(ā) < 0.
 (this will imply ⊛ > 0 for some h and ⊛ < 0 for other h)

Why?

Since $Hf(\bar{a})$ is symmetric, it is diagonalizable.

Thus, there is an invertible matrix P such that

$$\begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix} = P^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} P.$$

where λ_1 and λ_2 are the eigenvalues of $Hf(\bar{a})$.

It turns out that P can be chosen so that $P^{-1} = P^{T}$. (P is called an orthogonal matrix.)

Let
$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \bar{v} = P\bar{h}$$
. Then

$$\begin{aligned} \circledast &= \bar{h}^{\mathrm{T}} \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix} \bar{h} \\ &= \bar{h}^{\mathrm{T}} P^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} P \bar{h} \\ &= (P \bar{h})^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} P \bar{h} \\ &= \bar{v}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \bar{v} \\ &= \begin{bmatrix} v_{1} & v_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} \\ &= \lambda_{1} v_{1}^{2} + \lambda_{2} v_{2}^{2}. \end{aligned}$$

Since $\circledast = \lambda_1 v_1^2 + \lambda_2 v_2^2$, we conclude

- $\circledast > 0$ for all $\bar{h} \neq \bar{0}$ if λ_1 and λ_2 are both positive,
- $\circledast < 0$ for all $\bar{h} \neq \bar{0}$ if λ_1 and λ_2 are both negative,
- \circledast is mixed if λ_1 and λ_2 have opposite signs.

Similar matrices have the same determinant and the same trace.

Thus,

$$f_{xx}f_{yy} - (f_{xy})^2 = \det Hf(\bar{a}) = \det \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix} = \lambda_1\lambda_2$$

and

$$f_{xx} + f_{yy} = \text{trace } Hf(\bar{a}) = \text{trace } \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix} = \lambda_1 + \lambda_2.$$

Recall: the second derivative test says that if $Df(\bar{a}) = \begin{bmatrix} 0 & 0 \end{bmatrix}$

- f has a local minimum at ā if det Hf(ā) > 0 and f_{xx} > 0,
 (this will imply ⊛ > 0 for all h̄ ≠ 0̄)
- f has a local maximum at \bar{a} if det $Hf(\bar{a}) > 0$ and $f_{xx} < 0$, (this will imply $\circledast < 0$ for all $\bar{h} \neq \bar{0}$)
- f has a saddle point at ā if det Hf(ā) < 0.
 (this will imply ⊛ > 0 for some h and ⊛ < 0 for other h)

Suppose det $Hf(\bar{a}) < 0$.

Then $\lambda_1 \lambda_2 < 0$, so λ_1 and λ_2 have opposite signs.

By above, this means $\circledast > 0$ for some \bar{h} and $\circledast < 0$ for other \bar{h} ,

so f has a saddle point at \bar{a} . \checkmark

Now, suppose det $Hf(\bar{a}) > 0$.

Then $\lambda_1 \lambda_2 > 0$ so λ_1 and λ_2 have the same sign.

Also,
$$f_{xx}f_{yy} - (f_{xy})^2 > 0$$
, so $f_{xx}f_{yy} > 0$.

Thus f_{xx} and f_{yy} have the same sign as well.

But $f_{xx} + f_{yy} = \lambda_1 + \lambda_2$.

Thus $f_{xx}, f_{yy}, \lambda_1$, and λ_2 all have the same sign.

Therefore, if det $Hf(\bar{a}) > 0$ and $f_{xx} > 0$,

 λ_1 and λ_2 are both positive, so by above $\circledast > 0$ for all \bar{h} ,

and f has a local minimum at \bar{a} . \checkmark

And if det $Hf(\bar{a}) > 0$ and $f_{xx} < 0$,

 λ_1 and λ_2 are both negative, so by above $\circledast < 0$ for all h,

and f has a local maximum at \bar{a} . \checkmark

Note:

If det $Hf(\bar{a}) = 0$, the second derivative test is inconclusive.

Could be that f has a local minimum, local maximum, or saddle point at \bar{a} .

Need to make some other argument based on f to classify the critical point.