
The Second Derivative Test

(for f : R2 → R)



Suppose f : R2 → R is of class C2. Taylor’s theorem says that
for x̄ near ā,

f(x̄) ≈ f(ā) +Df(ā)(x̄− ā) +
1

2
(x̄− ā)THf(ā)(x̄− ā)

where

Hf(ā) =

[
fxx fxy
fxy fyy

]
.

If ā is a critical point, then Df(ā) =
[
0 0

]
so



f(x̄) ≈ f(ā) +
1

2
(x̄− ā)THf(ā)(x̄− ā).

By choosing x̄ close enough to ā, we can make the difference
between these actual values as small as we like.

Thus near ā, the difference between f(x̄) and f(ā) is
determined by the sign of

(x̄− ā)THf(ā)(x̄− ā)



Note that x̄− ā can be thought of as a vector based at ā.

Letting h̄ = x̄− ā, we have

f(x̄) ≈ f(ā) +
1

2
h̄THf(ā)h̄︸ ︷︷ ︸

~

.

Thus, f has:

• a local minimum at ā if ~ > 0 for all h̄ 6= 0̄,

• a local maximum at ā if ~ < 0 for all h̄ 6= 0̄,

• a saddle point at ā if ~ > 0 for some h̄ and ~ < 0 for other
h̄.



Suppose f : R2 → R is of class C2 and Df(ā) =
[
0 0

]
.

The second derivative test says that

• f has a local minimum at ā if detHf(ā) > 0 and fxx > 0,

(this will imply ~ > 0 for all h̄ 6= 0̄)

• f has a local maximum at ā if detHf(ā) > 0 and fxx < 0,

(this will imply ~ < 0 for all h̄ 6= 0̄)

• f has a saddle point at ā if detHf(ā) < 0.

(this will imply ~ > 0 for some h̄ and ~ < 0 for other h̄)



Why?

Since Hf(ā) is symmetric, it is diagonalizable.

Thus, there is an invertible matrix P such that

[
fxx fxy
fxy fyy

]
= P−1

[
λ1 0
0 λ2

]
P.

where λ1 and λ2 are the eigenvalues of Hf(ā).

It turns out that P can be chosen so that P−1 = PT. (P is
called an orthogonal matrix.)



Let

[
v1
v2

]
= v̄ = Ph̄. Then

~ = h̄T
[
fxx fxy
fxy fyy

]
h̄

= h̄TPT

[
λ1 0
0 λ2

]
Ph̄

= (Ph̄)T
[
λ1 0
0 λ2

]
Ph̄

= v̄T
[
λ1 0
0 λ2

]
v̄

=
[
v1 v2

] [λ1 0
0 λ2

] [
v1
v2

]
= λ1v

2
1 + λ2v

2
2.



Since ~ = λ1v
2
1 + λ2v

2
2, we conclude

• ~ > 0 for all h̄ 6= 0̄ if λ1 and λ2 are both positive,

• ~ < 0 for all h̄ 6= 0̄ if λ1 and λ2 are both negative,

• ~ is mixed if λ1 and λ2 have opposite signs.



Similar matrices have the same determinant and the same trace.

Thus,

fxxfyy − (fxy)2 = detHf(ā) = det

[
λ1 0
0 λ2

]
= λ1λ2

and

fxx + fyy = traceHf(ā) = trace

[
λ1 0
0 λ2

]
= λ1 + λ2.



Recall: the second derivative test says that if Df(ā) =
[
0 0

]
• f has a local minimum at ā if detHf(ā) > 0 and fxx > 0,

(this will imply ~ > 0 for all h̄ 6= 0̄)

• f has a local maximum at ā if detHf(ā) > 0 and fxx < 0,

(this will imply ~ < 0 for all h̄ 6= 0̄)

• f has a saddle point at ā if detHf(ā) < 0.

(this will imply ~ > 0 for some h̄ and ~ < 0 for other h̄)



Suppose detHf(ā) < 0.

Then λ1λ2 < 0, so λ1 and λ2 have opposite signs.

By above, this means ~ > 0 for some h̄ and ~ < 0 for
other h̄,

so f has a saddle point at ā. X



Now, suppose detHf(ā) > 0.

Then λ1λ2 > 0 so λ1 and λ2 have the same sign.

Also, fxxfyy − (fxy)2 > 0, so fxxfyy > 0.

Thus fxx and fyy have the same sign as well.

But fxx + fyy = λ1 + λ2.

Thus fxx, fyy, λ1, and λ2 all have the same sign.



Therefore, if detHf(ā) > 0 and fxx > 0,

λ1 and λ2 are both positive, so by above ~ > 0 for all h̄,

and f has a local minimum at ā. X

And if detHf(ā) > 0 and fxx < 0,

λ1 and λ2 are both negative, so by above ~ < 0 for all h̄,

and f has a local maximum at ā. X



Note:

If detHf(ā) = 0, the second derivative test is inconclusive.

Could be that f has a local minimum, local maximum, or
saddle point at ā.

Need to make some other argument based on f to classify
the critical point.


