Official defn of limits = hard to compute with. Tools: where denom = D 1. Limits behave well with +, -, x, +, scalar muth. e.g. $\lim_{x \to \overline{a}} f(\overline{x}) + g(\overline{x}) = \lim_{x \to \overline{a}} f(\overline{x}) + \lim_{x \to \overline{a}} g(\overline{x})$ (polynomials) 2. For vector - valued functions, can compute limits componenturise. F:18" → 18m $F = (f_1, f_2, ..., f_m)$ Scalar component functions (can compute these individually to find limit of F.

3. Continuity:
Defn Say
$$\pm : \mathbb{R}^{n} \to \mathbb{R}^{m}$$
 is continuous at \overline{a} if
lin $f(\overline{x}) = f(\overline{a})$.
 $\overline{x} \to \overline{a}$
So that exists \pm is defined at \overline{a} ,
 $\overline{x} \to \overline{a}$
So that exists \pm is defined at \overline{a} ,
 $\overline{x} \to \overline{a}$
So that exists \pm is defined at \overline{a} ,
 $\overline{x} \to \overline{a}$
So that exists \pm is defined at \overline{a} ,
 \overline{a} and they are equal.
So if f dis at \overline{a} , can compute limit by:
 \cdot first arguing that the function $\overline{a} \to \overline{a}$
 \cdot then plung \overline{a} into \overline{t} to find limit.
Further: $\sin cos_{1} \ln e^{(1)}, (1)^{n}, \overline{t}, \pm_{1}, -, \underline{x}_{1} \pm$
 $arc all cts on their domains$
 $as arc composites .$
 \overline{ex} lim $\left(\frac{\cos(x^{2}+y^{2})}{\sqrt{xy}}, x \pm y^{2}\right)$
Note: scalar composed functions are \overline{cts} at (1,1)
 $\overline{b}(c$ they composites of functions \overline{cts} at (1,1).

So: find limit by plugging in: value is: (cos2, 2).