By FTLI we know conservative vector fields are nich: $\int_{C} \nabla f \cdot d\bar{s} = f(6) - f(4)$ $\int_{C} \nabla f \cdot d\bar{s} = f(6) - f(6) - f(4)$ $\int_{C} \nabla f \cdot d\bar{s} = f(6) - f(6) - f(4)$ $\int_{C} \nabla f \cdot d\bar{s} = f(6) - f(6) - f(6) - f(6)$ $\int_{C} \nabla f \cdot d\bar{s} = f(6) - f($

By equality of mixed partials, it must be trat

$$N_x = (f_y)_x = (f_x)_y = M_y.$$

So: if Nx ≠ My, F is not conservative.

More generally, sps $\overline{F} = (M, N, R)$ is conservative. Then $\overline{F} = (f_x, f_y, f_z)$ So $curl \vec{F} = \vec{l} \cdot \vec{j} \cdot \vec{k}$ $\frac{3}{3x} \cdot \frac{3}{3y} \cdot \frac{3}{3z}$ $f_x \cdot f_u \cdot f_z$ = $(f_{2y} - f_{y_2}, f_{x_2} - f_{z_x}, f_{y_x} - f_{x_y}) = \bar{0}$ (recall: curl(VF) = 0) So: If CURI F = 0, Fix not conservative.

Thm If
$$\vec{F} = (M_1N_1P)$$
 (or $\vec{F} = (M_1N_1)$) is a
vector field on a simply connected region
in R^3 (or R^2) such that M_1N_1P have
continuous partial derivatives then
 \vec{F} is conservative \iff curl $\vec{F} = \vec{O}$ (or $M_y = N_y$)