MATH 226:Differential Equations

Class 4: February 17, 2025

Notes on Assignment 2 Assignment 3 Direction Field for y' = f(t,y)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Qualitative Analysis of Autonomous Differential Equation

$$\frac{dy}{dt} = f(y)$$

- 1. Find Equilibrium Solutions (f(y) = 0)
- 2. Create Phase Line

Determine when f(y) > 0 and where f(y) < 0Label with arrows.

3. Classify Equilibrium Solutions

Asymptotically Stable: $\rightarrow \bullet \leftarrow$ Semistable: $\rightarrow \bullet \rightarrow$ or $\leftarrow \cdot \leftarrow$ Unstable: $\leftarrow \bullet \rightarrow$ Asymptotically Stable Semistable Unstable $\downarrow \qquad \downarrow\uparrow \qquad \uparrow$ $\uparrow \qquad \downarrow\uparrow \qquad \downarrow\uparrow$ 4. Sketch Solutions

Increasing, Decreasing, Concavity

Determining Concavity of *y* as a Function of *t*

$$y'(t) = f(y(t) \text{ or more simply } y' = f(y)$$

Use Second Derivative:

$$y''(t) = f'(y(t) \times y'(t)) = \frac{df}{dy} \times \frac{dy}{dt} = \frac{df}{dy} \times f(y)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• Use Graph of f(y) as a function of y

Determining Concavity of y as a Function of t

Example:
$$y' = (y - 1)(y + 1)(y - 2) = (y^2 - 1)(y - 2)$$

Use Second Derivative:

$$y''(t) = f'(y(t) \times y'(t)) = \frac{df}{dy} \times \frac{dy}{dt} = \frac{df}{dy} \times f(y)$$
$$y'' = [3y^2 - 4y - 1][(y^2 - 1)(y^2)]$$

• Use Graph of f(y) as a function of y

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

 $\mathcal{O} \land \mathcal{O}$

Since $y'(t) = f(y(t))$, we have $y''(t) = \frac{df}{dy}\frac{dy}{dt} = f''(y(t))y'(t)$			
Interval	y'(t)	y''(t)	Behavior
			of Solution
y < -1	-	-	Decreasing Concave Down
$-1 < y < r_1$	+	+	Increasing, Concave Up
$r_1 < y < 1$	+	-	Increasing, Concave Down
$1 < y < y_2$	-	+	Decreasing, Concave Up
$y_2 < y < 2$	-	-	Decreasing, Concave Down
<i>y</i> > 2	+	+	Increasing, Concave Up

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - の久で

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Some More Integral Curves For $y' = (y^2 - 1)(y - 2)$

