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Integration Review 

Integrals of a wide variety of functions arise throughout the study of differential equations. This 
section gathers the main techniques of integration that will be sufficient to handle the integrals 
encountered in “Differential Equations: An Introduction to Modern Methods and Applications,” 
third edition, by James Brannan and William Boyce.  

Standard Anti-derivatives 

If a function f is continuous on an interval [a, b], then the definite integral ( )
b

a
f x dx∫  exists and

is finite.  The method of evaluating a definite integral depends on the nature of the integrand f(x).  
If an anti-derivative F(x) of f(x) can be determined, then the Fundamental Theorem of Calculus 

states that ( ) ( ) ( ).
b

a
f x dx F b F a= −∫  As such, having techniques for constructing anti-derivatives

is beneficial.  The following short list of anti-derivatives of frequently occurring elementary 
functions is the starting point for the evaluation of more complicated integrals. 

f(x) Anti-derivative F(x) 
, 1nx n ≠ −  1

1

nx C
n

+

+
+

1
x

ln x C+

sin x cos x C− +
cos x  sin x C+

2sec x tan x C+
tan secx x sec x C+

a   (constant) ax C+

2 2

1
a x+

  (a is a constant) 1 arctan x C
a a

  + 
 

2 2

1
a x−

 (a is a constant) arcsin x C
a

  + 
 

sinh x cosh x C+
cosh x sinh x C+

xe xe C+
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Substitution (Change of Variable) 

Objective:  To simplify an integral by reducing the integrand to a more easily integrable form, 
such as one of the entries in the list on the preceding page. 

Procedure: 
1) Select an expression in the integrand to be called u.  (See the suggestions for selecting u

below.)

2) Compute
dx
du  and solve for du as though

dx
du  were a fraction, dxxudu )(′= .

3) Rewrite the integrand in terms of u and du by substitution.
4) If variable u was well-chosen, then the resulting integrand will be simpler than the original

one.  If possible, evaluate this integral in terms of u.
Note:

i) Do not integrate with mixed variables (two different letters).
ii) The du should be in the numerator.

5) Substitute back to obtain the result in terms of the original variable x.

Suggestions for selecting u: 
1) Try to find an expression to call u in the integrand for which the derivative of u is essentially
also there (in the numerator).
2) Often, such a u will be a troublesome or complicated expression (the reduction of which to a
single letter will be helpful.)

Example 1. Evaluate 2 1x x dx+∫
Solution: Let 12 += xu .  Then, x

dx
du 2=  so that xdxdu =2

1 .  Observe that 

( )
33

2 21 2
2 2

11 1 1 21
2 2 2 3 3

xux x dx u du u du C C
+

+ = ⋅ = = + = +∫ ∫ ∫ .

Example 2. Evaluate ( )3ln
3

x
dx

x∫
Solution: Let xu ln= .  Then,  

xdx
du 1

=  so that dxdu x
1= .  Observe that 

( ) ( )3 43 4ln ln
3 3 12 12

x xu udx du C C
x

= = + = +∫ ∫ .

If your integral has limits you have two choices: 
1) Integrate as above resubstituting in terms of x  and then plugging in your limits for x.
or
2) When you make your substitution into u, change your x – limits to u – limits and evaluate
immediately without resubstituting to x.
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Example 3.  Evaluate dx
x∫ +

4

0 43
1

Solution:  
Way 1.  Suppress the limits until the end. 
Let 43 += xu .  Then, dxdu 3=  so that dxdu =3

1 .  Observe that 
1 1
2 21 1 1 1 22 3 4

3 3 3 33 4
dudx u du u C x C

x u
−  

= = = + = + + 
+  

∫ ∫ ∫ . 

Now insert the limits: 

3
4)2(

3
2)4)0(34)4(3(

3
243

3
2

43
1

24416

4

0

4

0

==+−+=



 +=

+
==

∫
((((

xdx
x

. 

Way 2.  Convert x-limits to u-limits, and proceed with the new definite integral. 
Let 43 += xu .  Then, dxdu 3=  so that dxdu =3

1 . 
      When 44)0(3,0 =+== ux  

When 164)4(3,4 =+== ux
Now, observe that 

( )
164 16 16 1 1

2 2

0 4 4 4

1 1 1 2 2 2 2 416 4 (4 2) (2)
3 3 3 3 3 3 33 4

u

u

dudx u du u
x u

=
−

=

 
= = = = − = − = = +  

∫ ∫ ∫

INTEGRATION BY PARTS 

Objective:  To reduce the integral of a product to a simpler form. 

When to apply:   
1) Check to see if the given integral can easily be integrated by substitution. If it can, use

substitution.
2) If not and the integral is a (simple) product, often integration by parts can prove useful.

Formula:  There are two common (equivalent) ways of writing the integration by parts formula. 
In functional form it reads 

One order Reverse orderProduct

The integral you seek to find Hopefully a simpler integral
more amenable to computation

( ) ( ) ( ) ( ) ( ) ( )f x g x dx f x g x g x f x dx′ ′= −∫ ∫
(( (( ((

(((( ((((

In traditional form this is often written: 

∫ ∫−= vduuvudv ,
where to compare with the functional form we have set )(xfu = and )(xgv = , so that 

( )dv g x dx′=  and dxxfdu )(′= . 
Procedure:   
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1)  Split up the given integrand to be a product with: 

i) One factor called 








u
xf )(

.  This factor should has a 






 ′

dualdifferenti
xfderivative )(

. 

ii) The other factor is 






 ′

dv
xg )(

.  Integrate this factor to obtain 








v
xg )(

. 

2)  Use the parts formula above to obtain an integral on the right side.  If this integral is simpler 
than the original one, well and good.  If it is not, then consider whether a different choice of 







 ′

dvandu
xgandxf )()(

 would be better. 

3)  Integrate the right side.  Keep in mind that sometimes integration by parts must be applied 
several times in succession to evaluate the original integral. 

4)  Plug in the limits if you have any. 
  
 
Example 4:  Evaluate xxe dx−∫  

Solution:  Let 1)(,)( =′= xfxxf   (Simple) and xx exgexg −− −==′ )(,)(   (Easily 
integrated).  Using the integration by parts formula then yields 
 

 

( )( ) ( ) ( )

Note this integral is a
simpler integral than
the original one.

( ) ( ) (1)

( 1)

x x x

f xf x g x g x

x x

x x

x

xe dx x e e dx

xe e dx

xe e C
e x C

− − −

′

− −

− −

−

= ⋅ − − − ⋅

= − +

= − − +

= − + +

∫ ∫

∫

 

((  

Note that if you had chosen instead ( )  and ( ) ,xf x e g x x− ′= =  then  xexf −−=′ )(  (not bad), 

,
2

)(
2xxg =  but then  

2 2

This integral is worse than
the original integral.

2 2
x x xx xxe dx e e dx− − −= − +∫ ∫



 

Thus the formula is all right, but the resulting integral is harder than the one you started with.  
Hence, if you had made this choice of )(xf  and )(xg , you would go back and make another 
more judicious selection. 

  
Example 5.  Suppose 1−≠n . Evaluate lnnx xdx∫ . 
Solution:  Let  

dxduxu x
1,ln == , 

1
,

1

+
==

+

n
xvdxxdv

n
n . 
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Using the integration by parts formula then yields 



1 1

1

1 1

1

1ln ln
1 1

1ln
1 1

1ln
1 1 1

1ln
1 1

n n
n

u
v v du

n
n

n n

n

x xx xdx x dx
n n x

x x x dx
n n
x xx C
n n n
x x C
n n

+ +

+

+ +

+

= ⋅ − ⋅
+ +

= −
+ +

= − +
+ + +

 = − + + + 

∫ ∫

∫

  

 
  

Example 6.  Evaluate 2 xx e dx−∫ . 
Solution:  Sometimes, the integration by parts formula must be applied multiple times in 
succession. Let xdxduxu 2,2 == , xx evdxedv −− −== , .  Using the integration by parts 
formula then yields 

( )

2 2

Use parts again.

2

See Example 4.

2

2

2

2

2

2 2

x x x

x x x

x x x

x

x e dx x e xe dx

x e xe e dx

x e xe e C

e x x C

− − −

− − −

− − −

−

= − +

 = − + − + 

 = − + − − + 

= − + + +

∫ ∫

∫

((

((((  

If there are limits on the integral when applying parts, evaluate these limits in the natural way.   

Example 7.  Evaluate 
2

1
ln

e
x xdx∫ .      

Solution: Let dxduxu x
1,ln ==  , 2

3

3
2, xvdxxdv == .  (See Example 5.)  Using the 

integration by parts formula then yields 





( )

( )

2
2 2

1
2

2

3 3
2 2

1 1
1

3
3 2

1 0 1

3 3

3

3

2 2 1ln ln
3 3

2 2 2 2ln ln1
3 3 3 3

2 4 1
3 9
2 4
9 9
2 2
9

e
e e

x

e

x xdx x x x dx
x

e e x

e e

e

e

 
= − ⋅ 

 

   
= − − ⋅       

= − −

= +

= +

∫ ∫
((
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Occasionally when applying parts with trigonometric functions, repeated use of the formula 
results in a cycling back to the original integral.  In such case, transpose, combine, and solve for 
the desired integral as in the following example.  

Example 8.  Evaluate sinxe xdx∫ .

Solution:  Let dxedueu xx == , , xvxdxdv cos,sin −== .  Using the integration by parts 
formula then yields 

Apply parts in the same
manner as the first application

sin cos cosx x xe xdx e x e xdx= − +∫ ∫


For the integral on the right side, let dxedueu xx == , ,  xvxdxdv sin,cos == .  Observe that 

The original integral
      back again

sin cos sin sinx x x xe xdx e x e x e xdx C

 
 

= − + − + 
 
  

∫ ∫


Solving by transposing all xdxe x sin∫  to the left yields

( ) Cxxexdxe xx +−=∫ cossinsin2 ,
so that 

( )sin sin cos
2

x
x ee xdx x x C= − +∫ . 

Integrating Trigonometric Functions 
The following trigonometric definitions and identities are often useful when integrating 
trigonometric functions. 

sintan
cos
coscot
sin

1sec
cos

1csc
sin

θθ
θ
θθ
θ

θ
θ

θ
θ

=

=

=

=

2 2

2 2

2 2

2

2

sin cos 1
1 tan sec

sin 2 2sin cos
cos 2 cos sin

1 cos 2sin
2

1 cos 2cos
2

θ θ

θ θ
θ θ θ

θ θ θ
θθ

θθ

+ =

+ =
=

= −
−

=

+
=

  

The following formulas can be obtained by using the substitution technique. 
f(x) Anti-derivative F(x) 

tan x ln cos x C− +
cot x  ln sin x C+
sec x  ln sec tanx x C+ +
csc x ln csc cotx x C− +
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Integrating products of powers of sines and cosines ∫ sin x com ns xdx

Case 1: At least one of m and n is odd.  (Both could be odd, and one of them could be zero.) 

From the odd one split off one factor to use in du and apply sin 2 x + cos2 x = 1 to the remaining 
even power.  Use substitution u = the opposite function. 

Example 9.  Evaluate ∫ sin x cos3 2 xdx .

Solution:  Split off one of the sine terms and use the identity, as follows. 



( )

( ) ( )

( )( )

2

3 2 2 2

1 cos

2 2

2 4

sin cos sin cos sin

1 cos cos sin

cos cos sin

x

x xdx x x xdx

x x xdx

x x xdx

= −

=

= −

= −

∫ ∫

∫
Now, let xu cos= , so that xdxdu sin−= .  Observe that 

( )( )

( )

3 2 2 4

2 4

3 5

3 5

sin cos ... cos cos sin

3 5
sin sin

3 5

x xdx x x xdx

u u du

u u C

x x C

= = −

= − −

= − + +

=− + +

∫ ∫
∫

Case 2:  Both m and n are even (and one of them could be zero). 

Use the half-angle formulae, repeatedly if necessary. 

Example 10.  Evaluate 2 2sin 3 cos 3x xdx∫ .
Solution:   

( )

( )

2 2

2

1 cos 6 1 cos 6sin 3 cos 3
2 2

1 1 cos 6
4
1 1 cos121
4 2
1 1 cos12
8
1 sin12
8 12

x xx xdx dx

x dx

x dx

x dx

xx C

− +  =   
  

= −

+ = − 
 

= −

 = − + 
 

∫ ∫

∫

∫

∫
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For combinations of 




xxxx
xxxx

nmnn

nmnn

csccot,csc,cot
sectan,sec,tan

   use 




=+
++

xx
xx

22

22

csccot1
sectan1

along with parts (and 

substitution) as needed. 

)(
)(

xd
xn .

Integrating Rational Functions 

Let n(x) and d (x) be polynomials. Consider integrating rational expressions of form 

Case 1:  Degree of n(x) is greater than or equal to the degree of d(x) 

In such case, long divide to rewrite the function as 

)(
)()(

)(
)(

xd
xrxq

xd
xn

+= ,

where the degree of <)(xr  the degree of )(xd . 
See if you can apply a substitution or simplify and split into pieces to integrate. If not, apply the 

procedure outlined in Case 2 below to integrate ( )
( )

r x
d x

. 

Case 2:   Degree of n(x) is less than the degree of d(x) 

We break such rational functions down into a sum of simpler fractions guided by the nature of 
the factors of the denominator.   

To this end, factor )(xd into irreducible polynomials of degree 1 or 2. 

Each factor  ( )nbax +  leads to a contribution to the overall partial fraction decomposition of the
form  

n
n

bax
A

bax
A

bax
A

)()( 2
21

+
++

+
+

+


Each factor ncbxax )( 2 ++  leads to 

n
nn

cbxax
BxA

cbxax
BxA

cbxax
BxA

)()( 222
22

2
11

++
+

++
++

+
+

++
+



The sum of all such expressions obtained for each factor in the denominator of the original 
rational expression is called its partial fraction decomposition.  Consider the following example. 

Example 11.  Determine the form of the partial fraction decomposition for the rational function 

2223

4

)22)(1)(3)(2(
523

++++−
+−

xxxxxx
xx
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Solution.   

2223

4

)22)(1)(3)(2(
523

++++−
+−

xxxxxx
xx   decomposes into 

 

222232 )22(22132 ++
+

+
++

+
+

+
+

+
+

+
−

+++
xx

KJx
xx

IHx
x

GFx
x

E
x

D
x
C

x
B

x
A  

 
where the constants A, …, K must be determined to make the two expressions equal. 
 
 
Once you have the form of the partial fraction decomposition, determine the coefficients iA  and 

iB by solving a linear system obtained by equating corresponding coefficients.  Substitute them 
back into the decomposition and integrate each fraction separately.  The integrals that arise can 
be evaluated using  
i) regular power rule along with substitution 
ii) substitution to get ln or Arctan forms 
 

Example 12.  Evaluate dx
xx

xxx
∫ −−

+−−
2

7
2

23

. 

Solution.  Since the degree of the numerator is larger than the degree of the denominator, long 
divide to obtain  

2 3 2

3 2

2 7
2

7

x
x x x x x

x x x
x

− − − − +

− −
+

 

So, the original integrand can be written as  
3 2

2 2

7 7
2 2

x x x xx
x x x x
− − + +

= +
− − − −

  

and so,  
3 2

2 2 2

7 7 7
2 2 2

x x x x xdx x dx xdx dx
x x x x x x
− − + + + = + = + − − − − − − ∫ ∫ ∫ ∫ .    (1) 

 
We apply the method of Case 2 to evaluate the second integral in (1).  The partial fraction 
decomposition for the rational expression in this integral is  

21)2)(1(
7

−
+

+
=

−+
+

x
B

x
A

xx
x      (2) 

We must determine the constants A and B so that (2) holds.  To do so, we formulate a system of 
linear equations whose unknowns are A and B.  Observe that  
 

  ( )( ) )2)(1(
)2()(

)2)(1(
)1()2(

21
7

−+
+−++

=
−+

++−
=

−+
+

xx
BAxBA

xx
xBxA

xx
x    (3) 
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Equating coefficients in the numerator (the denominators are no longer needed here) leads to the 
system  

1
2 7

A B
A B
+ =

− + =
 

Solving this system yields 2, 3A B= − = . 
 
Thus  

( )

3 2

2 2

2

32

2

7 7
2 2

2 3
1 2

2ln 1 3ln 2
2

2
ln

2 1

x x x xdx x dx
x x x x

x dx
x x

x x x C

xx C
x

− − + + = + − − − − 
 = − + + − 

= − + + − +

−
= + +

+

∫ ∫

∫
 

 

Example 13.  Evaluate dx
xxx

xx
∫ +++

++
2793

2424
23

2

. 

Solution.  Since the degree of the numerator is less than the degree of the denominator, you 
cannot divide so proceed directly to the partial fraction decomposition.  Observe that  

)9)(3()3(9)3(2793 2223 ++=+++=+++ xxxxxxxx  

so that the partial fraction decomposition for the integrand is  

    
( )

2

2 2

4 2 24
3 ( 9) 3 9

x x A Bx C
x x x x

+ + +
= +

+ + + +
           (4)  

We must determine the constants A, B, and C so that (4) holds.  To do so, we formulate a system 
of linear equations whose unknowns are A, B, and C.  Observe that  

 ( ) ( )( ) ( ) ( ) ( )CAxCBxBAxCBxxAxx 393392424 222 +++++=++++=++         (5) 

Equating coefficients in the numerator (the denominators are no longer needed here) leads to the 
system  
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4
3 2

9 3 24

A B
B C

A C

+ =
 + =
 + =

Solving this system yields 1,1,3 −=== CBA . 
Thus, 

2

3 2 2

2
2

2

4 2 24 3 1
3 9 27 3 9

1 1 2 13
3 2 9 9

1 13ln 3 ln( 9) Arctan
2 3 3

x x xdx dx
x x x x x

xdx dx dx
x x x

xx x C

+ + − = + + + + + + 

= + −
+ + +

 = + + + − + 
 

∫ ∫

∫ ∫ ∫

Trigonometric Substitution 

When radicals of the form 22 ua −  22 ua +  22 au − , or even just 22 ua +  occur, try to 
form a right triangle with the same radical expression and make the appropriate trig substitution 
where an angle of the triangle becomes the new variable.  More explicitly, see below: 
Case 22 ua − Case 22 ua +  (or 22 ua + )        Case 22 au −

        a             u  22 ua +          u u 22 au −

    22 ua −   a           a 
Let Θ= sinau  Let Θ= tanau              Let Θ= secau
     ΘΘ= dadu cos       ΘΘ= dadu 2sec  ΘΘΘ= dadu tansec  

Θ=− cos22 aua Θ=+ sec22 aua Θ=− tan22 aau  

Example 13.  Evaluate 
2

29
x dx

x−
∫ . 

Solution:  Let Θ= sin3x  so that ΘΘ= ddx cos3 and Θ=− cos39 2x .  Set up the following 
right triangle:   

 3         x 

29 x−

Observe that 
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2 2

2

2

(3sin ) (3cos )
3cos9

9 sin

1 cos 29
2

9 sin 2
2 2

x dx d
x

d

d

C

Θ Θ Θ
=

Θ−

= Θ Θ

− Θ
= Θ

Θ = Θ− + 
 

∫ ∫

∫

∫

Now we must resubstitute back in terms of x.  From our triangle, 

Θ= sin
3
x , 

22
ππ

<Θ<
− ,

so that =Θ  Arcsin
3
x 

 
 

.  Also 

2
2

9
9
2

3
9

3
2cossin22sin xxxx

−=
−

⋅⋅=ΘΘ=Θ . 

Hence 
2

2

2

2

9 Arcsin 9
2 3 99
9 Arcsin 9
2 3 2

x dx x x x C
x

x x x C

  = − − +    −
 = − − + 
 

∫

Exercises.  Evaluate the following integrals. 

1.
22xx e dx∫ 2. 

( )5
2 3

ds

s s+
∫ 3. ( )2 3cos 1 4t t dt−∫

4. 2 sin(2 )x x dx∫ 5. ( )
1

cos ln
e

x dx∫ 6. 4 3sin cosx x dx⋅∫

7. cot (5 )x dx∫ 8. 
( )

3
22 49

dx

x +
∫ 9. 23 3x x dx∫  

10. 2
5

2

1
lnx x dx∫ 11. 2

1
4

x dx
x
+
−∫ 12. 

2

3 cot (2 )

csc (2 )
x

x dx
e∫

13.
( )2

1
4

dx
x x +∫   14. 2sec ( )x dxπ∫     15. 2cos (4 )x dx∫


	Way 2.  Convert x-limits to u-limits, and proceed with the new definite integral.



