
It is a curious historical fact that modern quantum mechanics
began with two quite different mathematical formulations: the

differential equations of Schroedinger and the matrix algebra of
Heisenberg. The two apparently dissimilar approaches were proved

to be mathematically equivalent. Richard Feynman
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What Are Differential Equations?

A differential equation is an equation relating some unknown
function and one or more of its derivatives.

▶ Orindary differential equation (ODE): unkown function has
only one independent variable.

y = y(t),
dy

dt
= ky

▶ Partial differential equation (PDE): unknown function has
more than one independent variable.

u = u(x , y), uxx + uyy = 0(or∆u = 0)
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What Are Differential Equations?

The order of a differential equation is the order of the highest
derivative appearing in the equation.

All differential equations can be written in the form

F (independent variable, dependent variable, variable and
derivatives) = 0

where all derivatives up to the highest power in the equation are
variables in F.

dy

dt
= ky ,

dy

dt
− ky = 0,F (t, y ,

dy

dt
) =

dy

dt
− ky

uxx + uyy = 0,F (x , y , ux , uy , uxx , uyy ) = uxx + uyy



What is a Solution To a Differential Equation?

Give the ODE
F (t, y , y ′, y ′′, ..., y (n)) = 0

a solution is a function y = ϕ(t) satisfying the equation for all t in
some open interval I :

1. ϕ is n times differentiable in I .

2. ϕ satisfies the equation for all t in I .

We say that y = ϕ(t) is a solution to the differential equation
on I .



A Differential Equation and Solution

Equation :
dy

dt
= 12y

Solution : ϕ(t) = 9e12t

Check : ϕ′(t) = 9(12e12t) = 12(9e12t) = 12ϕ(t)



Why Do We Care About Differential Equations?

Among all of the mathematical
disciplines the theory of differential
equations is the most important... It
furnishes the explanation of all those
elementary manifestations of nature

which involve time.

Sophus Lie
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Sophus Lie
Born:December 17, 1842, Nordfjordeid, Norway

Died: February 18, 1899, Oslo, Norway
MacTutor Biography

http://www-history.mcs.st-andrews.ac.uk/Biographies/Lie.html


Why Do We Care About Differential Equations?



Mathematical Modeling
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What is a Differential Equation(Informally)?

An equation that gives some explicit information about the
derivative of a function. but not about the function itself.

Goal : Solve the equation to find the underlying function.
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Example 1

y ′ = 2x ,
dy

dx
= 2x , f ′(x) = 2x

What are the possibilities for f ?

f (x) = x2 + C where C is any constant

Note: We can always check our proposed answer.
Can there be any other solution?
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Example 2: Generalize Example 1

y ′ = g(x),
dy

dx
= g(x), f ′(x) = g(x)

Solution:

y = f (x) =

∫
g(x)dx

The Integration (or Antiderivative) Problem
Techniques:

Substitution = Change of Variable
Integration By Parts

Partial Fraction Decomposition
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Where Do Differential Equations Arise?
Derivative is Measure of Rate of Change

Physical laws may give us information on how things evolve over
time.

Derivatives will be with respect to time.
Notation:

Independent Variable: t, x
Dependent Variable: y ,P, u



Example 3

P ′(t) = 3P(t) with P(0) = 100

Initial Value Problem

Applications:
Colony of Bacteria

Money Compounded Continuously
Human Population with Constant Per Capita Growth Rate
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P ′(t) = 3P(t) with P(0) = 100

Qualitative Analysis

P ′ is positive so P is increasing.

P ′′ = (P ′)′ = (3P)′ = 3P ′ = 3× 3P = 9P

So P ′′ > 0 and hence graph of P is increasing and concave up.
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P ′(t) = 3P(t) with P(0) = 100
Analytic Solution

1
P(t)P

′(t) = 3
Integrate each side with respect to t

ln|P(t)| = 3t + C
But P(t) > 0 so
lnP(t) = 3t + C

Apply exponential function to each side:
e lnP(t) = e3t+C = e3teC = Ce3t

Hence P(t) = Ce3t

Evaluate at 0:
100 = P(0) = Ce3×0 = Ce0 = C

so P(t) = 100e3t

P is unbounded

lim
t→∞

P(t) = +∞
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How about P ′ = −3P,P(0) = 100?

Application: Radioactive Decay
P ′ is initially negative, so P is decreasing

P ′′ = (P ′)′ = (−3P)′ = −3P ′ = −3(−3)P = 9P > 0
Hence P is decreasing and graph is concave up

Analytic Solution (Go Through Similar Steps)
P(t) = 100e−3t

Observe: P(t) > 0 for all t

lim
t→∞

P(t) = 0
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MORE GENERALLY:
P ′(t) = kP(t) with P(0) = P0

Analytic Solution

1
P(t)P

′(t) = k
Integrate each side with respect to t

ln|P(t)| = kt + C
But P(t) > 0 so
lnP(t) = kt + C

Apply exponential function to each side:
e lnP(t) = ekt+C = ekteC = Cekt
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Euler’s Method For ”Solving” Numerically P ′(t) = kP(t)
Pnew = Pold + k ∗ Pold ∗∆t



Euler’s Method For ”Solving” Numerically P ′(t) = kP(t)
Pnew = Pold + k ∗ Pold ∗∆t

Example: k = .04,P(0) = 1000
Time Approximate Exact

0. 1000.00 1000.00
0.1000000000 1004.00000 1004.008011
0.2000000000 1008.016000 1008.032086
0.3000000000 1012.048064 1012.072289
0.4000000000 1016.096256 1016.128685
0.5000000000 1020.160641 1020.201340
0.6000000000 1024.241284 1024.290318
0.7000000000 1028.338249 1028.395684
0.8000000000 1032.451602 1032.517505
0.9000000000 1036.581408 1036.655846
1.000000000 1040.727734 1040.810774



Generalizations

1. Population with immigration and/or emigration

2. Forest Management

3. Fishery Management

4. Lake Champlain Pollution

5. Anesthetic

6. Alcohol/Drug

P ′ = aP + b



Key Terms From Chapter 1

Independent Variable
Dependent Variable

Parameter
Solution

Equilibrium Solution
Integral Curves

Autonomous Differential Equation
Critical Point = Fixed Point = Stationary Point

Phase Line
One - Dimensional Phase Portrait

Asymptotically Stable
Unstable

Semistable Attractor = Sink
Repeller = Source

Linearization About An Equilibrium
Direction Field



Direction Field for P ′ = −.05P + 1000



Some Integral Curves For P ′ = −.05P + 1000


