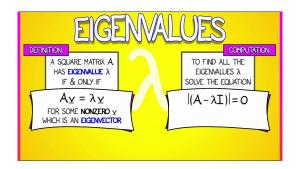
MATH 226 Differential Equations



Class 12: March 7, 2025

Assignment 8 Eigenvalues in MATLAB

Announcements

- ► First Team Projects Due Today
- ► Exam 1
 - WEDNESDAY
 - ▶ 7 PM ? (No Time Limit)
 - ▶ 104 Warner
 - No Calculators, Books, Notes, Smart Phones, etc.
 - Focus on Material in Chapters 1 and 2

Today's Topics

Introduction To Systems of First Order Differential Equations

- ► Lotka Volterra Predator Prey Model
- Richardson Arms Race Model
- Kermack McKendrick Epidemic Model
- Home Heating Model
- Terrorism Recruitment Model

Initial Concern: Homogeneous Systems of 2 First Order Differential Equations With Constant Coefficients

$$x' = ax + by, y' = cx + dy$$
$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\mathbf{X'} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{X}$$

Ideas and Tools From Linear Algebra Are Essential To This Study

EIGENVALUES AND EIGENVECTORS

$$A$$
 $n \times n$ [Square Matrix] \vec{x} $n \times 1$ [Element of R^n] Then $A\vec{x}$ is another vector in R^n .

Is there a **nonzero** vector \vec{v} and a constant λ such that

$$A\vec{v} = \lambda \vec{v}$$
?

The equation $A\vec{v} = \lambda \vec{v}$ is equivalent to

$$A\vec{v} - \lambda\vec{v} = \vec{0}$$

or
$$(A - \lambda I)\vec{v} = \vec{0}$$

which is a system of homogeneous equations.

The system has nontrivial solution if and only if

$$(A - \lambda I)$$
 is Non-Invertible.

$$\Rightarrow det(A - \lambda I) = 0.$$

Example

$$x' = -13x + 6y$$
$$y' = 2x - 2y$$

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} -13 & 6 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\vec{x}' = A\vec{x}$$
 or $X' = A X$

Looks like x'=ax which has solution $x=Ce^{at}$. Could there be a scalar λ and **nonzero** vector \vec{v} such that $\vec{x}=e^{\lambda t}\vec{v}$ is a solution?

$$\vec{x}' = A\vec{x}$$
 becomes $\lambda e^{\lambda t} \vec{v} = Ae^{\lambda t} \vec{v}$ or $A\vec{v} = \lambda \vec{v} \Rightarrow (A - \lambda I)\vec{v} = \vec{0}$.

Finding Eigenvalues and Associated Eigenvectors

Example:
$$A = \begin{bmatrix} -13 & 6 \\ 2 & -2 \end{bmatrix}$$

$$A - \lambda I = \begin{bmatrix} -13 - \lambda & 6 \\ 2 & -2 - \lambda \end{bmatrix}$$

$$\det (A - \lambda I) = (-13 - \lambda)(-2 - \lambda) - (2)(6)$$

$$\det (A - \lambda I) = 26 + 13\lambda + 2\lambda + \lambda^2 - 12$$

$$\det (A - \lambda I) = \lambda^2 + 15\lambda + 14 = (\lambda + 14)(\lambda + 1)$$

$$\lambda = -14$$
 or $\lambda = -1$.

$$A = \begin{bmatrix} -13 & 6 \\ 2 & -2 \end{bmatrix}$$

For
$$\lambda = -1$$
, $A - \lambda I = \begin{bmatrix} -13 - (-1) & 6 \\ 2 & -2 - (-1) \end{bmatrix}$

$$A - \lambda I = \begin{bmatrix} -12 & 6 \\ 2 & -1 \end{bmatrix}$$

Row Reduces to
$$\begin{bmatrix} -2 & 1 \\ 0 & 0 \end{bmatrix}$$

$$-2v_1 + v_2 = 0$$
 so $v_2 = 2v_1$

so a corresponding eigenvector is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

One Solution to
$$\vec{x}' = A\vec{x}$$
 is $e^{-t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$A = \begin{bmatrix} -13 & 6 \\ 2 & -2 \end{bmatrix}$$

For
$$\lambda = -14$$
, $A - \lambda I = \begin{bmatrix} -13 - (-14) & 6 \\ 2 & -2 - (-14) \end{bmatrix}$

$$A - \lambda I = \begin{bmatrix} 1 & 6 \\ 2 & 12 \end{bmatrix}$$

Row Reduces to
$$\begin{bmatrix} 1 & 6 \\ 0 & 0 \end{bmatrix}$$

$$w_1 + 6w_2 = 0$$
 so $w_2 = -\frac{1}{6}w_1$

so a corresponding eigenvector is $\begin{bmatrix} 6 \\ -1 \end{bmatrix}$.

Another Solution to
$$\vec{x}' = A\vec{x}$$
 is $e^{-14t}\begin{bmatrix} 6 \\ -1 \end{bmatrix}$

Suppose X_1 and X_2 are each solutions of $\mathbf{X'} = A\mathbf{X}$. Let α and β be any two constants. Claim $\alpha X_1 + \beta X_2$ is also a solution

Proof: On One Hand: $(\alpha X_1 + \beta X_2)' = \alpha X_1' + \beta X_2' = \alpha A X_1 + \beta A X_2$ On Other Hand : $A(\alpha X_1 + \beta X_2) = \alpha A X_1 + \beta A X_2$

The set of solutions to X' = AX is a **VECTOR SPACE**.

Theorem: Suppose $\lambda \neq \mu$ are two distinct eigenvalues of a square matrix A with respective eigenvectors \vec{v} and \vec{w} ; That is,

$$A\vec{v} = \lambda \vec{v}$$
 and $A\vec{w} = \mu \vec{w}$

Then $\{\vec{v}, \vec{w}\}$ is a Linearly Independent set of vectors.

Proof: Suppose a and b are constants such that

(*)
$$a\vec{v} + b\vec{w} = \vec{0}$$

First, Multiply (*) by A:

$$aA\vec{v} + bA\vec{w} = A\vec{0} = \vec{0}$$

(**)
$$a\lambda \vec{v} + b\mu \vec{w} = \vec{0}$$

Next, Multiply (*) by μ to obtain

$$(***) a\mu \vec{v} + b\mu \vec{w} = \vec{0}$$

Now subtract (***) from (**):

$$a(\lambda - \mu)\vec{v} = \vec{0}$$

Since $\lambda \neq \mu$ and $\vec{v} \neq \vec{0}$, we must have a = 0.

But this means $b\vec{w} = \vec{0}$ and hence b = 0.