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Announcements

» Second Team Project Due Monday, April 7
> Exam 2: Wednesday, Aprill6



Theorem: If A\ and u are
distinct eigenvalues (real or
complex) of a 2 X 2 matrix A
having corresponding
eigenvectors v and w, then
every solution of X’ = A x is a
linear combination of

e M7 and eftw.




(a+d)++/(a—d)?+4bc
2

A=

Possibilities
2 Real Unequal Roots
2 Complex Roots
1 Real Double Root



Chapter 3: Summary of Results from Brannan and Boyce

This completes our investigation of the possible behavior of solutions of a two-
dimensional linear homogencous system with constant coefficients, x'=Ax. When the coeflicient
matrix A has a nonzero determinant, there s a single equilibrium solution, or critical point, vhich
is located at the origin. By reflecting on the possibilities explored in this scction and in the two
preceding ones, and by examining th ing figures, we can mak ons:

1. After a long time, cach individual trajectory exhibits one of only three types of behavior. As ¢
— @, cach trajectory becomes unbounded, approaches the critical point x = 0, or repestedly
traverses a closed curve, corresponding to a periodic solution, that surrounds the critical point.

2. Viewed as a whole, the patten of trajectories in each case is relatively simple. To be more
specific, through each point (o, yo) in the phase planc there is only one trajectory; thus the
trajectories do not cross each other. Do not be misled by the figures, in which it sometimes appears
that many trajectori itical point x =0. In fact, the only solution passi

the origin is the equilibrium solution x = 0. The other solutions hat appear to pass through the
origin actually only approach this point as £ — a0 or £ — — oo,

3. In cach case, the set of all trajectories is such that one of three situations occurs.

a. All trajectorics approach the critical point x = 0 as ¢ — . This is the case if the
eigenvalues are real and negative or complex with a negative real part. The origin is cither a nodal
or a spiral sink.

b. Al trajectories remain bounded but do not approach the origin as £ — e, This is thecase
i the eigenvalues are purely imaginary. The origin is a center.

c. Some trajectories, and possibly all trajectories except x = 0, become unbounded asf —»
. This is the case if at least one of the eigenvalues is positive or if i
real part. The origin is a nodal source, a spiral source, or a saddle point.

positive

Stability properties of linear systems x' = Ax with det(A — AT) =0 and et A # 0.

. DpeofCrticalPoint____ Stability
Unstable.
ically stable
Unstable
Proper or improper node Unstable
Proper or improper node: Asymptotically stable
Spiral point
Unstable
Asymptotically stable
Center Stable




Double Roots
Begin With Some Very Simple Systems of form X' = AX

a 0 : x' = ax
Example 1:A = <0 a) so system is uncoupled Y = ay
which has solution
x=Ge*' - [(x(t)\ _ 1 0\ | .
y:Cgeat%X_<y(t) - Cl 0 +C2 1 e
From Eigenvalue/Eigenvector Perspective:
A=\l = <a 6 A 5 8 A) . det(A—\I) = (a—\)? so A = a is double root

For Eigenvectors: A\ = a:

00
A—)\I—A—al—<0 0)

Any nonzero vector is an eigenvector. We can choose

B



Eigenvalue/Eigenvector Perspective:

A-\l = <a o A . E A) . det(A—Al) = (a—A)2 so A = a is double root

The Algebraic Multiplicity is 2
For Eigenvectors: A\ = a:

00
A—)\IA—aI(O 0)

Any nonzero vector is an eigenvector. We can choose

V= (é) ,W = (2) The Geometric Multiplicity is also 2.



Double Roots

/
Example 2: A= (8 i) System is x y,a:x;l)—/ly
Solve y' = ay to get y = Goe®*
Then x’ = ax + y = ax + G,e?" which we can rewrite as
x' — ax = Gye?.
This is a first-order Linear Differential Equation.
An Integrating Factor is e~ 2! giving

Xe T —axe ' = Gele " =G

so (xe %) = G
implying xe %' = Gt + G

or x = Cleat + G te?t



_ a1 . x'=ax+1y
Example 2: A = <0 a> System is Y = ay
y = C2eat,X = G e + Gte®!
We can write the solution of the original system as

x\ [ Get + Cote™
y - Cgeat
G G
__at at
=e€ <C2) + te < 0 >

Note new type of solution te?!
From Eigenvalue/Eigenvector Perspective:

A\ = (a B A . ! A) . det(A—Al) = (a—))? so A = a is double root
For Eigenvectors: \ = a:

01
A—)\I—A—al—<0 0)



From Eigenvalue/Eigenvector Perspective:

A=\ = <a o A , i A) : det(A—\) = (a—))2 s0 \ = a is double root

The Algebraic Multiplicity is 2
For Eigenvectors: \ = a:

01
A—)\I—A—al—<0 0)

The system

01 ) = 0 means vo = 0, vy = any value

We may choose vV = <(1)>

One Solution of X'=AX is e? ((1))



Can We Produce a Solution of the Form
X = teMy 4+ eMw

where V is an eigenvector of A associated with \?
If so, how do we find w?
We need X' = AX

Left Hand Side: X/ = t e MV + e My + Ae .

= M [EAV 4 V + AW]

Right Hand Side: AX = A(te**V + e*w)
= te™AV + M AW
= M [tAV + AW] but AV = AV
= M [tAV + AW]



We need X/ = AV

X' = M [tAV + V + Aw]
AX = M [tAV + AW]

To Get Equality, We Need Entries in [| To Match:

tAV 4+ V 4+ AW = tAV + Aw
AW =V + \w

.or Aw — Aw =V

(A= X)w =V

We can solve this algebraic equation for w



To get a solution of the form
X = teMv+ eMw to X' = AX

choose V to be an eigenvector associated with eigenvalue A and
w to satisfy (A— N)w =V

Claim: {V,w} is a Linearly Independent Set
Proof: Suppose C1V + Cow =0
Multiply both sides by (A — \/)
CLA= M)V + G(A— AW = (A— A0
But (A— M)V =0,(A—A)0=0,(A—\)w ="V
So GV =0BUT ¥#0s0 G, =0
Hence C1v = 0 but this again yields C; = 0.



{V,w} is a Linearly Independent Set
From here, it is easy to show that
{e MV, te’V + e*w} is a Linearly Independent Set of Solutions
Proof: Suppose Cie*V + G(te*v + eMw) = 0
Evaluate at t = 0, using e*? = 1:
GvV+GO+w)=0
Cv+GCw=0
which implies CG; =0,G =0



4 b\ . 4—X b
A—(_2 6) glvesA—/\I—<_2 6—)\>

det(A— M) = (4—X)(6—)\) —(—2)b
=24 — 10\ + N> +2b
= A2+ 10\ +24 +2b

10 £ /100 — 4(24 + 2b)
2
10 + /4 — 4(2b)
2
10+2y1—2b

2
=5++v1-2b
Set b=1/2so A =5 is a double root.

Eigenvalues: \ =




(4 1)2 ) _(A-X 1)2
A—<_2 6>g|vesA—)\I—<_2 6—)\>

which has A =5 as a double root (Algebraic Multiplicity = 2)

To Find Eigenvectors: A— Al = A — 5] = (:; 1{2>

which row reduces to <(1) _t/2>

(A— )V =0 becomes —2v; + v = 050 vo = 21 or V = <é>
The geometric multiplicity is 1

One solution to X’ = AX is €% ;
To get another solution, solve (A — A)w =V

(5 ) ()-6)



One solution to X’ = AX is €5 ( >
W=

—

v

~ N

To get another solution, solve (A — A/

2 %) () =6)

We get two equations: —wy + %WQ =1 2w +wp =2
which yield wo = 2 4+ 2wy

We can choose w = (i)

Another solution to X = AX is te®tv + &5tw =

1 1
5t 5t
te <2> +e <4>

We can write general solution as

ae (1) + o () 4 (1)



—

General solution t AX is

to X
1 G+ Gt+ G
5t 5t 5t _ 1 2 2
o (s () oo (] (p0 180 %)
X(0)

< ) we have

With Initial Condition

G+G=4
2 +4CG, =6

which has solution: ¢; =5, G; = —1 vyielding

se 5-t—1)\_ se(4-t
10 — 2t — 4 6 — 2t



