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Announcements

» Second Project Due Monday, April 7
> Exam 2 on Wednesday, April 16



Mathematician of the Week: Mary Lee Wheat Gray

April 4, 1939 —

Mary Gray is an American mathematician, statistician, and lawyer.
She has written on mathematics, education, computer science,
statistics and academic freedom.



Systems of First Order Linear Differential Equations

Why Not Study Second Order Equations?
Damped Harmonic Oscillator ~ Swinging Pendulum
mw”(t) + bw' +kw =0  0"(t)+ £sinf(t) =0
Let x=w and y = w'.
Then X' =w/ =y and y' = w"
so mw”(t) + bw’ + kw = 0 becomes my’ + by + kx =0
Thus we have the system

X =Yy
kb
y=——x——y
m m
Let x =60 and y = 0. Then #”(t) + £ sinf(t) = 0 becomes
system x’ = y,y’ + £sinx = 0.



Systems of First Order Linear Differential Equations

1
x' = (sint)x + <t> y +9z 42t

y' = (t*)x — (cos3t)y + (e 3")z + sect
7' = (log t)x — 2020y + (tan t)z + e*

x' sint % 9 % 2t3
y | =1 t2 —cos3t e 3| [y]| + [sect
z logt —2020 tant z et

X' = P(t) X + g(t)

Homogeneous: X' = P(t) X



Major Theorems On Systems of
First Order Linear Differential
Equations

Basic Existence and Uniqueness Result

THEOREM (Existence and Uniqueness for First Order Linear Systems). If P(f) and g(t) are con-
6:2.1 tinuous on an open interval / = (a, §), then there exists a unique solution x = ¢(f) of the
initial value problem

x' =P(Ox + g(1), x(1p) = xg, @

where fq is any point in /, and x, is any constant vector with n components. Moreover
the solution exists throughout the interval /.



Linear Combinations of
Solutions of Homogeneous
Systems Are Solutions

THEOREM (Principle of Superposition). If x, X,, ..., X, are solutions of the homogeneous linear
6.2.2 system ;

¥ =P()x )
on the interval / = (a, f), then the linear combination
C1X) + Xy + - + O X
is also a solution of Eq. (5) on 1.
Proof Letx = ¢, + ¢%; + -+ + ¢4 %;. The result follows from the linear operations of matrix
multiplication and differentiation:

P(x = P(D)[cx) + - + ¢;x,]
= P(0x; + - + ¢ P(N)x,
= r:,x'1 + o gx, =X



Definition of Linear
Independence

DEFINITION The n vector functions Xy, ..., X, are said to be linearly independent on an interval I
6.2.3 if the only constants ¢/, ¢, ..., ¢, such that

XA+ +c,x,(H0=0 ©)

forall t € I are ¢; = ¢; = -+ = ¢, = 0. If there exist constants C1s Cyyo- -y Cyy Ot all

zero, such that Eq. (6) is true for all ¢t € 7, the vector functions are said to be linearly
dependent on /.
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Wronskians and the Struggle for Linear

Independence
DEFINITION Letxy, ..., %, be n solutions of the homogeneous linear system of differential equations
6.2.4 x’ = P(¢)x and let X(?) be the n X n matrix whose jth column is X; @ j=1....m
i@ x,)
X0 =| : N B (12)
X (8) o X, (0)

The Wronskian W = W[x,, ..., x,] of the n solutions X1, ..., X, is defined by

WXy, .., %, 100 = det X(1). 1)



THEOREM
6.2.5

Proof

Letxy, ...,x, be solutions of x’ = P(1)x on an interval I = (@, f) in which P(2) is con-
tinuous.

(@) Ifxy,...,x, are linearly independent on 7, then Wixy, ..., x,]1(r) # O at every point
in/,

(ii) If x, ..., X, are linearly dependent on /, then Wxy, ..., x,](t) = 0 at every point
ini.

Assume first that x,, ..., x, are linearly independent on 7. We then want to show that
WIxy, ..., X,1(2) # O throughout 7. To do this, we assume the contrary, that is, there
is a point #y € / such that W[x,, ...,x,](¢) = 0. This means that the column vectors
{x; (%), --- . X,(tp)} are linearly dependent (Theorem A.3.6) so that there exist constants
€y, .-+ &y, not all zero, such that &%, (f) + - + ¢,X,(tp) = 0. Then Theorem 6.2.2 im-
plies that ¢(r) = &,x,(2) + --- +&,%,(?) is a solution of X’ = P()x that satisfies the ini-
tial condition x(7y) = 0. The zero solution also satisfies the same initial value problem.
The uniqueness part of Theorem 6.2.1 therefore implies that ¢ is the zero solution, that
is, @(2) = €% (1) + -+ + &,x,(1) = 0 for every ¢ € (a, §), contradicting our original as-
sumption that x,, ..., X, are linearly independent on 7. This proves (i).

To prove (ii), assume that x, ..., x, are linearly dependent on 1. Then there exist
constants ay, ... ,,, not all zero, such that ;x, (t) + - + ,x,(2) = 0 for every t €].
Consequently, for each ¢ €/, the vectors x,(?), ... ,X,(t) are linearly dependent. Thus
WIxy, ..., x,](z) = 0 at every point in / (Theorem A.3.6).



Dimension of Solution Space of x* = P@) x

THEOREM
6.2.6

Proof

Letx,...,x, be solutions of
x' =P()x (14

on the interval a < t < f such that, for some point 7y € (, #), the Wronskian is nonzero,
WIx,, ..., X,1(to) # 0. Then each solution x = @(t) of Eq. (14) can be expressed as a
linear combination of X5 4544 Xy

D) = 21%,(1) + -+ + &,%,(2), (15)

where the constants ¢, ... , &, are uniquely determined.

Let ¢(2) be a given solution of Eq. (14). If we set X = (1), then the vector function ¢
is a solution of the initial value problem

X' =P0Ox,  x(ty) =x,. (16)

By the principle of superposition, the linear combination W) = oy %, (1) + - + ¢, %,(1)
is also a solution of (14) for any choice of constants €y, .., C,. The requirement
W(tp) = Xg leads to the linear algebraic system

X(tp)e = xp, an
where X(?) is defined by Eq. (12). Since WIxy, ..., %,1(5) # O, the linear algebraic sys-
tem (17) has a unique solution (see Theorem A.3.7) that we denote by ¢y, ..., &, Thusthe
particular member @(7) = &, (£) + - + &,,,(t) of the n-parameter family represented
by w(¢) also satisfies the initial value problem (16). By the uniqueness part of Theorem

6.2.1, it follows that ¢ = = &x, + - + &,X,. Since @ is arbitrary, the result holds
(with different constants, of course) for every solution of Eq. (14).



THEOREM Let
6.2.7

further letx;, ..., x, be solutions of x’ = P(¢)x that satisfy the initial conditions
xi() =e;, ..., X,(1p) =e,

respectively, where ¢, is any point in & < 7 < . Then Xy, ..., X, form a fundamental set
of solutions of x’ = P(f)x.



Homogenous Linear Systems
With Constant Coefficients

X’ = P(t) X where P(t) is a matrix of CONSTANTS

X' = A X where A is an n x n matrix of CONSTANTS

x'=5x+29y — 4z — 1w

y' =12x + 21y — 19z + 66w
7 = —8x+ 15y + 7z — 2w
w' = 4x + 9y + 20z + 20w



Linear Systems with Constant

THEOREM
6.3.1

Coefficients

Simplest Case

Let (A1, vy), ..., (A, v,) be eigenpairs for the real, n X n constant matrix A. Assume that
the eigenvalues Ay, ..., A,, are real and that the corresponding eigenvectors vy, ..., v, are
linearly independent. Then

{Mtv,, .., iy, ) )

is a fundamental set of solutions to x’ = Ax on the interval (=0, 00). The general solu-
tion of x’ = Ax is therefore given by

x(t) = ¢ My + -+ c ey, ©)

where c|, ..., ¢, are arbitrary constants.



A Differential Equations Model of Political Movement

35
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e 2
r i ki \
| | 05 .
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"= —-2L+.25M + .1R
M’ = 15L — .6M + 2R
R' = .05L+ .35M — 3R



Consider a system of first order linear homogeneous differential
equations with constant coefficients
X' =AX
where A is n x n matrix of constants and X is n x 1 vector of
functions of t.

Theorem 1 If A is an eigenvalue of A with corresponding
eigenvector v, then e*v is a solution of X' = AX.

Proof: If X = eV, then
X' =\ eMV
= eMA\V
—eMAV
= A e My
=AX



Theorem 2 If A and p are distinct eigenvalues of A with
corresponding eigenvectors v and w
(thatis, AV = X vV and Aw = uw)
then
1. {V,w} is a linearly independent set of vectors

2. {eMV, e!tw} is a linearly independent set
of solutions of X’ = AX

Proof of 1: Suppose C1 and C2 are constants such that
(*)CLV+C2w=0,

Multiply (*) by A to obtain (**) CLAV + C2uw =0
Multiply (*) by 1 to obtain (¥**) C1 u vV + C2 uw =0
Subtract (¥**) from (**)to obtain C1(A - ) Vv =0

But A - #0and v #0; Hence C1 =0

which implies C2 w =0 and that implies C2 = 0.



Theorem 2 If A and u are distinct eigenvalues of A with
corresponding eigenvectors vV and w, then

1. {V,w} is a linearly independent set of vectors
2. {eMV, eMtw) is a linearly independent set
of solutions of X' = AX

Proof of 2: Suppose C1 and C2 are constants such that

Cl eMv + C2 eltw = 0.
Evaluate both sides at t = 0:

Cl eV + C2 e =0
Cle®V+C2ew=0
Clv+Cw=0
which implies C1 and C2 are both 0.



A Generalization of Theorem 2

Theorem 3 If A, 4 and « are distinct eigenvalues of A with
corresponding eigenvectors vV, w and &
(thatis, AV=AV, Aw = uw, Ad = ai')
then

1. {V,w, d} is a linearly independent set of vectors

2. {eMV, el'tw, e*tii} is a linearly independent set
of solutions of X’ = AX



A Even Bigger Generalization of Theorem 2

Theorem 4 If A1, Ao, ..., A\x , are distinct eigenvalues of A with
corresponding eigenvectors vi, va, ..., Vi
(thatis, A v; = \; for each i =1,2,3,....k
then

1. {vi,v3,..., vk} is a linearly independent set of vectors

2. {eMtvi, eMtvs, ..., eMtvi} is a linearly independent set of
solutions of X’ = AX



