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Theorem: Let λ1, λ2, ..., λm be m distinct eigenvalues of a square
matrix A with corresponding eigenvectors v1, v2, ..., vm,
respectively; that is, Avi = λivi for i = 1, 2, 3, ...,m.
Then the set {v1, v2, ..., vm} is linearly independent.

Consequently, the functions eλ1tv1, e
λ2tv2, ...e

λmtvm form a
linearly independent set of solutions to the system x′ = Ax.



Proof of the Theorem via Mathematical Induction
. We have proved the cases m = 1 and m = 2

. Suppose the Theorem is true for some positive integer m = k .
. Now consider λ1, λ2, ..., λk , λk+1 be k + 1 distinct eigenvalues of

a square matrix A with corresponding eigenvectors
v1, v2, ..., vk, vk+1, respectively.

Consider a linear combination of these k + 1 vectors equal to 0:
. (*) C1v1 + C2v2 + ...+ Ckvk + Ck+1vk+1 = 0
Multiply (*) by A and then by λk+1 to obtain

. (**) C1λ1v1 + C2λ2v2 + ...+ Ckλkvk + Ck+1λk+1vk+1 = 0
. (***)

C1λk+1v1 + C2λk+1v2 + ...+ Ckλk+1vk + Ck+1λk+1vk+1 = 0
. Subtract (***) from (**)

. C1(λ1 − λk+1)v1 +C2(λ2 − λk+1)v2 + ...+Ck(λk − λk+1)vk = 0
. But {v1, v2, ..., vk} is a linearly independent set.

. Hence each Ci (λi − λk+1) is 0. These means each Ci is 0 for
i = 1, 2, ..., k .

. Substitute back into (*) to obtain Ck+1vk+1 = 0 , implying Ck+1

also = 0.



Example 1

A =


−40 −6 19 −28 50
−69 −13 35 −44 88
114 26 −53 56 −138
1 2 −1 −1 −2

−87 −16 41 −52 107


Characteristic Polynomial:

λ5 − 20λ3 + 30λ2 + 19λ− 30
= (λ+ 5)(λ− 1)(λ− 2)(λ− 3)(λ+ 1)

Eigenvalue Eigenvector (written horizontally)

3 v1 = (2,4,2,1,2)
1 v2 = (1,2,-1,1,2)
-1 v3 = (2,1,-2,1,3)
2 v4 = (1,3,2,1,1)
-5 v5 = 1,-1,3,1,0)

C1e
3tv1 + C2e

tv2 + C3e
−tv3 + C4e

2tv4 + C5e
−5tv5





Example 2

A =


8 1 −3 4 −7

−21 −2 9 −10 25
−6 −1 5 −4 7
−5 −1 2 0 6
1 0 −1 2 1


Characteristic Polynomial:

λ5 − 12λ4 + 57λ3 − 134λ2 + 156λ− 72
= (λ− 3)2(λ− 2)3

λ = 2 has algebraic multiplicity 3 and geometric multiplicity 3 with
a linearly independent set of 3 vectors

{v1, v2, v3}
= { (1,1,0,0,1), (-2,8,0,1,0), 1,-3,1,0,0) }

λ = 3 has algebraic multiplicity 2 and geometric multiplicity 2 with
a linearly independent set of 2 vectors

{w1,w2} = { (1,-1,-1,0,1), (-1,4,1,1,0) }



The General Solution to X′ = AX is

C1e
2tv1 + C2e

2tv2 + C3e
2tv3 + C4e

3tw1 + C5e
3tw2







Example 4

A =


39 7 −17 23 −45
−26 −4 13 −15 34
−83 −17 42 −52 104
11 2 −5 9 −13
62 12 −29 39 −74


Characteristic Polynomial:

λ5 − 12λ4 + 57λ3 − 134λ2 + 156λ− 72
= (λ− 3)2(λ− 2)3

λ = 2 has algebraic multiplicity 3 but geometric multiplicity 1 with
only 1 linearly independent eigenvector ( 0,4,3,1,0 )

λ = 3 has algebraic multiplicity 2 but geometric multiplicity 1 with
only 1 linearly independent eigenvector (1,2,-1,1,2)



Example 5

A =


19 3 −8 10 −20
1 2 −1 2 −1

−17 −3 10 −10 20
6 1 −3 6 −7
23 4 −11 14 −25


Characteristic Polynomial:

λ5 − 12λ4 + 57λ3 − 134λ2 + 156λ− 72
= (λ− 3)2(λ− 2)3

λ = 2 has algebraic multiplicity 3 and geometric multiplicity 3 with
a linearly independent set of 3 vectors

{v1, v2, v3}
= { (1,1,0,0,1), (-2,8,0,1,0), 1,-3,1,0,0) }

λ = 3 has algebraic multiplicity 2 but geometric multiplicity 1 with
only 1 linearly independent eigenvector (1,2,-1,1,2)



A is 5× 5 matrix so solving X′ = AX involves finding 5 linearly
independent solutions. We have 4.

How do we find a 5th?
λ = 3 has algebraic multiplicity 2 but geometric multiplicity 1 with

only 1 linearly independent eigenvector v = (1, 2,−1, 1, 2).
Recall what we did in 2× 2 case

We formed a new solution of the form teλtv + eλtw where w was
chosen so that (A− λI )w = v so that Aw − λw = v or

Aw = λw + v
We can do the same thing here:

(teλtv + eλtw)′ = tλeλtv + eλtv + λeλtw
A(teλtv + eλtw) = teλtAv + eλtAw

= teλtλv + eλtλw + eλtv



Some Conditions To Check:
The vectors v and w form a Linearly Independent Set

The Five Solutions Form a Linearly Independent Set of Functions



Return to Example 4

A =


39 7 −17 23 −45
−26 −4 13 −15 34
−83 −17 42 −52 104
11 2 −5 9 −13
62 12 −29 39 −74


Characteristic Polynomial:

λ5 − 12λ4 + 57λ3 − 134λ2 + 156λ− 72
= (λ− 3)2(λ− 2)3

λ = 2 has algebraic multiplicity 3 but geometric multiplicity
1 with only 1 linearly independent eigenvector ( 0,4,3,1,0 )
λ = 3 has algebraic multiplicity 2 but geometric multiplicity 1 with

only 1 linearly independent eigenvector (1,2,-1,1,2)



λ = 2 has algebraic multiplicity 3 but geometric multiplicity
1 with only 1 linearly independent eigenvector ( 0,4,3,1,0 )

We are short 2 solutions
Suppose v is an eigenvalue associated with λ

and w satisfies (A− λI )w = v
Then eλtv and teλtv + eλtw are solutions.

To find a third:
Pick vector u such that (A− λI )u = w

Then t2

2 e
λtv + teλtw + eλtu is also a solution.



Suppose λ has algebraic multiplicity 4 but geometric
multiplicity 1 with only 1 linearly independent eigenvector v

Pick vectors w,u, s so that
(A− λI )w = v
(A− λI )u = w
(A− λI )s = u

Then 4 solutions are
eλtv

teλtv + eλtw
t2

2 e
λtv + teλtw + eλtu

t3

3!e
λtv + t2

2!e
λtw + teλtu+ eλts



What’s Next?

x ′ = ax has solution x = Ceat

Could X′ = AX have solution X = CeAt?


