MATH 226: Differential Equations

Class 21: Friday, April 4 2025

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Notes on Assignment 13 Assignment 14

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Announcements

Project 2 Due Monday Exam 2 Wednesday, April16

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem: Let $\lambda_1, \lambda_2, ..., \lambda_m$ be *m* **distinct** eigenvalues of a square matrix *A* with corresponding eigenvectors $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}$, respectively; that is, $A\mathbf{v_i} = \lambda_i \mathbf{v_i}$ for i = 1, 2, 3, ..., m. Then the set $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}\}$ is linearly independent.

Consequently, the functions $e^{\lambda_1 t} \mathbf{v}_1, e^{\lambda_2 t} \mathbf{v}_2, \dots e^{\lambda_m t} \mathbf{v}_m$ form a linearly independent set of solutions to the system $\mathbf{x}' = A\mathbf{x}$.

Proof of the Theorem via *Mathematical Induction* . We have proved the cases m = 1 and m = 2. Suppose the Theorem is true for some positive integer m = k. . Now consider $\lambda_1, \lambda_2, ..., \lambda_k, \lambda_{k+1}$ be k+1 distinct eigenvalues of a square matrix A with corresponding eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}$, respectively. Consider a linear combination of these k + 1 vectors equal to **0**: . (*) $C_1 \mathbf{v}_1 + C_2 \mathbf{v}_2 + ... + C_k \mathbf{v}_k + C_{k+1} \mathbf{v}_{k+1} = \mathbf{0}$ Multiply (*) by A and then by λ_{k+1} to obtain . (**) $C_1\lambda_1\mathbf{v}_1 + C_2\lambda_2\mathbf{v}_2 + ... + C_k\lambda_k\mathbf{v}_k + C_{k+1}\lambda_{k+1}\mathbf{v}_{k+1} = \mathbf{0}$. (***) $C_1\lambda_{k+1}\mathbf{v}_1 + C_2\lambda_{k+1}\mathbf{v}_2 + \dots + C_k\lambda_{k+1}\mathbf{v}_k + C_{k+1}\lambda_{k+1}\mathbf{v}_{k+1} = \mathbf{0}$. Subtract (***) from (**) . $C_1(\lambda_1 - \lambda_{k+1})\mathbf{v}_1 + C_2(\lambda_2 - \lambda_{k+1})\mathbf{v}_2 + ... + C_k(\lambda_k - \lambda_{k+1})\mathbf{v}_k = \mathbf{0}$. But $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is a linearly independent set. . Hence each $C_i(\lambda_i - \lambda_{k+1})$ is 0. These means each C_i is 0 for i = 1, 2, ..., k. . Substitute back into (*) to obtain $C_{k+1}\mathbf{v}_{k+1} = \mathbf{0}$, implying C_{k+1}

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$A = \begin{bmatrix} -40 & -6 & 19 & -28 & 50 \\ -69 & -13 & 35 & -44 & 88 \\ 114 & 26 & -53 & 56 & -138 \\ 1 & 2 & -1 & -1 & -2 \\ -87 & -16 & 41 & -52 & 107 \end{bmatrix}$$

Characteristic Polynomial: $\lambda^5 - 20\lambda^3 + 30\lambda^2 + 19\lambda - 30$ $= (\lambda + 5)(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda + 1)$ Eigenvalue Eigenvector (written horizontally) 3 $v_1 = (2,4,2,1,2)$ 1 $v_2 = (1,2,-1,1,2)$ -1 $v_3 = (2,1,-2,1,3)$ 2 $v_4 = (1,3,2,1,1)$ -5 $v_5 = 1,-1,3,1,0)$

$$C_1 e^{3t} \mathbf{v_1} + C_2 e^t \mathbf{v_2} + C_3 e^{-t} \mathbf{v_3} + C_4 e^{2t} \mathbf{v_4} + C_5 e^{-5t} \mathbf{v_5}$$

SAC

The Matrix A Is Nondefective With Real Eigenvalues

Let $(\lambda_1, \mathbf{v}_1), \ldots, (\lambda_n, \mathbf{v}_n)$ be eigenpairs for the real, $n \times n$ constant matrix A. Assume that the eigenvalues $\lambda_1, \ldots, \lambda_n$ are real and that the corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent. Then

$$\left\{e^{\lambda_1 t}\mathbf{v}_1,\ldots,e^{\lambda_n t}\mathbf{v}_n\right\}$$

is a fundamental set of solutions to x' = Ax on the interval $(-\infty, \infty)$. The general solution of x' = Ax is therefore given by

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + \dots + c_n e^{\lambda_n t} \mathbf{v}_n,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where c_1, \ldots, c_n are arbitrary constants.

$$A = \begin{bmatrix} 8 & 1 & -3 & 4 & -7 \\ -21 & -2 & 9 & -10 & 25 \\ -6 & -1 & 5 & -4 & 7 \\ -5 & -1 & 2 & 0 & 6 \\ 1 & 0 & -1 & 2 & 1 \end{bmatrix}$$

Characteristic Polynomial: $\lambda^{5} - 12\lambda^{4} + 57\lambda^{3} - 134\lambda^{2} + 156\lambda - 72$ $= (\lambda - 3)^{2}(\lambda - 2)^{3}$ $\lambda = 2$ has algebraic multiplicity 3 and geometric multiplicity 3 with a linearly independent set of 3 vectors $\{v_1, v_2, v_3\}$ $= \{ (1,1,0,0,1), (-2,8,0,1,0), 1, -3,1,0,0) \}$ $\lambda = 3$ has algebraic multiplicity 2 and geometric multiplicity 2 with a linearly independent set of 2 vectors $\{\mathbf{w_1}, \mathbf{w_2}\} = \{(1, -1, -1, 0, 1), (-1, 4, 1, 1, 0)\}$

The General Solution to $\mathbf{X}' = A\mathbf{X}$ is

$$C_1 e^{2t} \mathbf{v_1} + C_2 e^{2t} \mathbf{v_2} + C_3 e^{2t} \mathbf{v_3} + C_4 e^{3t} \mathbf{w_1} + C_5 e^{3t} \mathbf{w_2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$A = \begin{bmatrix} 39 & 7 & -17 & 23 & -45 \\ -26 & -4 & 13 & -15 & 34 \\ -83 & -17 & 42 & -52 & 104 \\ 11 & 2 & -5 & 9 & -13 \\ 62 & 12 & -29 & 39 & -74 \end{bmatrix}$$

Characteristic Polynomial:

$$\lambda^5 - 12\lambda^4 + 57\lambda^3 - 134\lambda^2 + 156\lambda - 72$$

 $= (\lambda - 3)^2(\lambda - 2)^3$

 $\lambda = 2$ has algebraic multiplicity 3 but geometric multiplicity 1 with only 1 linearly independent eigenvector (0,4,3,1,0) $\lambda = 3$ has algebraic multiplicity 2 but geometric multiplicity 1 with only 1 linearly independent eigenvector (1,2,-1,1,2)

$$A = \begin{bmatrix} 19 & 3 & -8 & 10 & -20 \\ 1 & 2 & -1 & 2 & -1 \\ -17 & -3 & 10 & -10 & 20 \\ 6 & 1 & -3 & 6 & -7 \\ 23 & 4 & -11 & 14 & -25 \end{bmatrix}$$

Characteristic Polynomial:

$$\lambda^5 - 12\lambda^4 + 57\lambda^3 - 134\lambda^2 + 156\lambda - 72$$

 $= (\lambda - 3)^2(\lambda - 2)^3$

$$\begin{split} \lambda &= 2 \text{ has algebraic multiplicity 3 and geometric multiplicity 3 with} \\ & a \text{ linearly independent set of 3 vectors} \\ & \left\{ \mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} \right\} \\ &= \left\{ (1,1,0,0,1), (-2,8,0,1,0), 1,-3,1,0,0) \right\} \\ \lambda &= 3 \text{ has algebraic multiplicity 2 but geometric multiplicity 1 with} \\ & \text{ only 1 linearly independent eigenvector } (1,2,-1,1,2) \end{split}$$

A is 5 \times 5 matrix so solving $\mathbf{X}' = A\mathbf{X}$ involves finding 5 linearly independent solutions. We have 4. How do we find a 5th? $\lambda = 3$ has algebraic multiplicity 2 **but** geometric multiplicity 1 with only 1 linearly independent eigenvector $\mathbf{v} = (1, 2, -1, 1, 2)$. Recall what we did in 2×2 case We formed a new solution of the form $te^{\lambda t}\mathbf{v} + e^{\lambda t}\mathbf{w}$ where **w** was chosen so that $(A - \lambda I)\mathbf{w} = \mathbf{v}$ so that $A\mathbf{w} - \lambda \mathbf{w} = \mathbf{v}$ or $A\mathbf{w} = \lambda \mathbf{w} + \mathbf{v}$ We can do the same thing here: $(te^{\lambda t}\mathbf{v} + e^{\lambda t}\mathbf{w})' = t\lambda e^{\lambda t}\mathbf{v} + e^{\lambda t}\mathbf{v} + \lambda e^{\lambda t}\mathbf{w}$ $A(te^{\lambda t}\mathbf{v} + e^{\lambda t}\mathbf{w}) = te^{\lambda t}A\mathbf{v} + e^{\lambda t}A\mathbf{w}$ $= t e^{\lambda t} \lambda \mathbf{v} + e^{\lambda t} \lambda \mathbf{w} + e^{\lambda t} \mathbf{v}$

Some Conditions To Check: The vectors **v** and **w** form a Linearly Independent Set The Five Solutions Form a Linearly Independent Set of Functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Return to **Example 4**

$$A = \begin{bmatrix} 39 & 7 & -17 & 23 & -45 \\ -26 & -4 & 13 & -15 & 34 \\ -83 & -17 & 42 & -52 & 104 \\ 11 & 2 & -5 & 9 & -13 \\ 62 & 12 & -29 & 39 & -74 \end{bmatrix}$$

Characteristic Polynomial:

$$\lambda^5 - 12\lambda^4 + 57\lambda^3 - 134\lambda^2 + 156\lambda - 72$$

 $= (\lambda - 3)^2(\lambda - 2)^3$

 $\lambda = 2$ has algebraic multiplicity 3 but geometric multiplicity 1 with only 1 linearly independent eigenvector (0,4,3,1,0) $\lambda = 3$ has algebraic multiplicity 2 but geometric multiplicity 1 with only 1 linearly independent eigenvector (1,2,-1,1,2)

Suppose λ has algebraic multiplicity 4 but geometric multiplicity 1 with only 1 linearly independent eigenvector v Pick vectors **w**, **u**, **s** so that $(A - \lambda I)\mathbf{w} = \mathbf{v}$ $(A - \lambda I)\mathbf{u} = \mathbf{w}$ $(A - \lambda I)\mathbf{s} = \mathbf{u}$ Then 4 solutions are $e^{\lambda t} \mathbf{v}$ $te^{\lambda t}\mathbf{v} + e^{\lambda t}\mathbf{w}$ $\frac{t^2}{2}e^{\lambda t}\mathbf{v} + te^{\lambda t}\mathbf{w} + e^{\lambda t}\mathbf{u}$ $\frac{t^3}{2!}e^{\lambda t}\mathbf{v} + \frac{t^2}{2!}e^{\lambda t}\mathbf{w} + te^{\lambda t}\mathbf{u} + e^{\lambda t}\mathbf{s}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What's Next?

$$x' = ax$$
 has solution $x = Ce^{at}$
Could $\mathbf{X}' = AX$ have solution $\mathbf{X} = Ce^{At}$?