
MATH 226: Differential Equations

Class 23: Wednesday, April 9, 2025



Variation of Parameters 1
Variation of Parameters 2



Announcements

Student Symposium: Friday, April 11
Assignment 15: Due Monday, April 14

Exam 2: Wednesday Evening, April 16





Today’s Agenda

▶ Nonhomogenous Systems

▶ More on Defective Matrices

▶ Quick Peek at Nonlinear Systems



Nonhomogeneous Systems

Recall Solution of x ′ = ax + g(t)
x ′ − ax = g(t)

Multiply by integrating factor e−at

(xe−at)′ = e−atg(t)

xe−at =
∫
e−atg(t) dt + C

x = eat
∫
e−atg(t) dt + Ceat

x = eat
∫ t
0 e−asg(s) ds + Ceat

Evaluate at t = 0:

x = eat
∫ t

0
e−asg(s) ds + x(0)eat



Nonhomogeneous Systems

x ′ = ax + g(t) has solution x = eat
∫ t
0 e−asg(s) ds + eatx(0)

X’ = AX+ g(t) has solution

X = eAt
∫ t

0
e−Asg(s) + eAtX(0)

X = Φ(t)

∫ t

0
Φ−1(s)g(s) +Φ(t)X(0)

We can also write the solution as

X(t)

∫ t

t0

X−1(s)g(s) ds + X(t)X−1(t0)

where X is any fundamental solution of X’ = AX



More on Defective Matrices

Solving x’ = Ax when A is ”defective”
Suppose λ is an eigenvalue of A with algebraic multiplicity 3 but

geometric multiplicity 1.

Find v such that (A− λI )v = 0
Find w such that (A− λI )w = v
Find u such that (A− λI )u = w

Then 3 linearly independent solutions of x’ = Ax are
eλtv

teλtv + eλtw

t2

2 e
λtv + teλtw + eλtu

What to do if λ is an eigenvalue of A with algebraic multiplicity
bigger than 3 but geometric multiplicity 1?



WHY DOES THIS WORK?

KEY STEP:

(A− λI )v = 0 implies Av = λv
(A− λI )w = v implies Aw = v + λw
(A− λI )u = w implies Au = w + λu



Find v such that (A− λI )v = 0
Find w such that (A− λI )w = v
Find u such that (A− λI )u = w

Note: 3 systems of linear algebraic equations with the same
coefficient matrix

Example

 4 8 12
−82 204 295
64 −128 −184


Characteristic Polynomial : λ3 − 24λ2 + 192λ− 512 = (λ− 8)3

Eigenvalue λ = 8 has algebraic multiplicity 3, but geometric
multiplicity only 1.

Here (A− λI ) =

 −4 8 12
−82 196 295
64 −128 −192


To solve (A− λI )x = b construct augmented matrix −4 8 12 | a

−82 196 295 | b
64 −128 −192 | c


and reduce to row echelon form



To solve (A− λI )x = b :

Augmented matrix is

 −4 8 12 | a
−82 196 295 | b
64 −128 −192 | c



1 0 1

16 | 49
32a+

1
16b

0 1 49
32 | − 41

64a+
1
32b

0 0 0 | 16a+ c

 so x =


49
32a+

1
16b − 1

16x3

−41
64a+

1
32b − 49

32x3

16a+ c


For (A− λI )v = 0, set a = 0, b = 0, c = 0:

v =

 −(1/16)x3
−(49/32)x3

x3

 = x3

 −1/16
−49/32

1

 =

 −2
−49
32

 if x3 = 32




1 0 1

16 | 49
32a+

1
16b

0 1 49
32 | − 41

64a+
1
32b

0 0 0 | 16a+ c

 so x =


49
32a+

1
16b − 1

16x3

−41
64a+

1
32b − 49

32x3

16a+ c


For (A− λI )w = v, set a = −2, b = −49, c = 32:

w =

w1

w2

w3

 =

 (−1/16)w3

1/4− (49/32)w3

w3

 =

 0
1/4
0

 if w3 = 0.



x =


49
32a+

1
16b − 1

16x3

−41
64a+

1
32b − 49

32x3

16a+ c


For (A− λI )u = w, set a = 0, b = −1/4, c = 0:

u =

u1
u2
u3

 =

 (−1/64)− (1/16)u3
(−1/128)− (49/32)u3

u3

 =

 −1/64
−1/128

0

 if u3 = 0.

Thus v =

 −2
−49
32

, w =

 0
1/4
0

 , u =

 −1/64
−1/128

0





Solving x’ = Ax when A is ”defective”
Suppose λ is an eigenvalue of A with algebraic multiplicity 4 but

geometric multiplicity 1.

Find v such that (A− λI )v = 0
Find w such that (A− λI )w = v
Find u such that (A− λI )u = w
Find z such that (A− λI )z = u

Then 4 linearly independent solutions of x’ = Ax are
eλtv

teλtv + eλtw

t2

2 e
λtv + teλtw + eλtu

t3

3!e
λtv + t2

2 e
λtw + teλtu+ eλtz



Next Major Goal:
Study Nonlinear Systems

of General First Order Differential Equations

x ′ = F (x , y , t) x ′ = F (x , y , z , t)
y ′ = G (x , y , t) y ′ = G (x , y , z , t)

z ′ = H(x , y , z , t)
General Case

x ′1 = f1(x1, x2, ..., xn, t)
x ′2 = f2(x1, x2, ..., xn, t)

.

.

.
x ′n = fn(x1, x2, ..., xn, t)



n = 2 n = 3

x ′ = F (x , y , t) x ′ = F (x , y , z , t)
y ′ = G (x , y , t) y ′ = G (x , y , z , t)

z ′ = H(x , y , z , t)

Autonomous Systems
No Explicit t on Right Hand Side

n = 2 n = 3

x ′ = F (x , y) x ′ = F (x , y , z)
y ′ = G (x , y) y ′ = G (x , y , z)

z ′ = H(x , y , z)



Three Approaches:

Analytic: Rarely Possible To Find Closed Form Solution

Numeric: Detailed Information About a Single Solution

Geometric: Qualitative Information About All Solutions



Example

x ′ = (2− y)(x − y)
y ′ = (1 + x)(x + y)

STEP ONE: Identify All Equilibrium Points
x’ =0 along lines y =2 and y = x

y’ =0 along lines x = -1 and y = -x



x ′ = (2− y)(x − y), y ′ = (1 + x)(x + y)

x’ =0 along lines y =2 and y = x
y’ =0 along lines x = -1 and y = -x



n = 2 n = 3

x ′ = F (x , y , t) x ′ = F (x , y , z , t)
y ′ = G (x , y , t) y ′ = G (x , y , z , t)

z ′ = H(x , y , z , t)

Autonomous Systems
No Explicit t on Right Hand Side

n = 2 n = 3

x ′ = F (x , y) x ′ = F (x , y , z)
y ′ = G (x , y) y ′ = G (x , y , z)

z ′ = H(x , y , z)



Special Properties of Autonomous Systems

1. Direction Field is Independent of Time

2. Only One Trajectory Passing Through Each Point (x0, y0)

3. A Trajectory Can Not Cross Itself

4. A Single Well-Chosen Phase Portrait Simultaneously Displays
Important Information About All Solutions


