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‘



Notes on Assignment 16
Assignment 17



Upcoming Schedule

Today: Competition Model
Predator – Prey Model

Wednesday: Fragility of a Center
Periodic Solutions and Limit Cycles

Friday: Chaos and Strange Attractors



Current Goal:
Approximating Nonlinear Autonomous

System with Linear System
Near An Equilibrium Point

x ′ = F (x , y)

y ′ = G (x , y)

F (x , y) ≈ F (x∗, y∗) + Fx(x
∗, y∗)(x − x∗) + Fy (x

∗, y∗)(y − y∗)

G (x , y) ≈ G (x∗, y∗) + Gx(x
∗, y∗)(x − x∗) + Gy (x

∗, y∗)(y − y∗)

But at Equilibrium Points, F (x∗, y∗) = 0,G (x∗, y∗) = 0 so

F (x , y) ≈ Fx(x
∗, y∗)(x − x∗) + Fy (x

∗, y∗)(y − y∗)

G (x , y) ≈ Gx(x
∗, y∗)(x − x∗) + Gy (x

∗, y∗)(y − y∗)



F (x , y) ≈ Fx(x
∗, y∗)(x − x∗) + Fy (x

∗, y∗)(y − y∗)

G (x , y) ≈ Gx(x
∗, y∗)(x − x∗) + Gy (x

∗, y∗)(y − y∗)

which we can write as

[
Fx(x

∗, y∗) Fy (x
∗, y∗)

Gx(x
∗, y∗) Gy (x

∗, y∗)

] [
x − x∗

y − y∗

]
or

J(x∗, y∗)

[
x − x∗

y − y∗

]
= J(x∗, y∗)

[
h
k

]
J is called the Jacobi Matrix or Jacobian



Simple Competition Model
x ′ = ax − bxy = x(a− by) = F (x , y)
y ′ = my − nxy = y(m − nx) = G (x , y)

a, b,m, n > 0

Search For Equilibrium Points
x ′ = 0 at x = 0, y = a

b
y ′ = 0 at y = 0, x = m

n
Critical Points: (0,0) and (mn ,

a
b ) : One Point Orbits

x-axis is an orbit and y -axis is an orbit.

x ′ > 0 y ′ > 0

x(a− by) > 0 y(m − nx) > 0
Both Positive Both Positive

x > 0 and y < a
b y > 0 and x < m

n
OR OR

Both Negative Both Negative
x < 0 and y > a

b y >=< 0 and x > m
n
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Simple Competition Model
x ′ = ax − bxy = x(a− by) = F (x , y)
y ′ = my − nxy = y(m − nx) = G (x , y)

a, b,m, n > 0
Fx = a− by Gx = −ny
Fy = −bx Gy = m − nx

J(0, 0) =

[
a 0
0 m

]
Both Eigenvalues are positive



Fx = a− by Gx = −ny
Fy = −bx Gy = m − nx

J(mn ,
a
b ) =

[
a− b a

b −bm
n

−n a
b m − nm

n

]
=

[
0 −bm

n
−na

b 0

]
Characteristic Polynomial λ2 − −an

b
bm
n = λ2 − am

Eigenvalues ±
√
am so we have Saddle Point.

Eigenvectors: v =

(
−bm
n
√
am

)
,w =

(
bm

n
√
am

)



A Specific Example: a = .9, b = .6,m = .4, n = .3

Critical Point ( .4.3 ,
.9
.6) = (43 ,

3
2)

J() =

[
0 − (.6)(.4)

.3
− .27

.6 0

]
=

[
0 −4

5
− 9

20 0

]
Eigenvalue Eigenvector Solution

λ =
√
36/100 = 3

5 v =

(
−4/3
1

)
e

3
5
tv

λ = −
√

(36/100 = −3
5 w =

(
4/3
1

)
e−

3
5
tw

General Solution of Linear System

C1e
3
5
t

(
−4/3
1

)
+ C2e

− 3
5
t

(
4/3
1

)



Behavior Near Equilibrium Point



Simple Model Of Competition x ′ = ax − bxy
y ′ = my − nxy
a, b,m, n > 0

Each Species Grows Exponentially in Absence of Other.



Simple Model x ′ = ax − bxy
y ′ = my − nxy
a, b,m, n > 0

Each Species Grows Exponentially in Absence of Other.

More Realistic Model
x ′ = ax − px2 − bxy
y ′ = my − qy2 − nxy

a, b,m, n > 0
Each Species Grows Logistically in Absence of Other.



Lotka–Volterra Classic Predator – Prey Model
x ′ = ax − bxy = x(a− by)

y ′ = −my + nxy = y(−m + nx)
a, b,m, n > 0



Predator - Prey Model with Logistic Prey Growth
x ′ = ax − px2 − bxy
y ′ = −my + nxy
a, b,m, n, p > 0

a

p
>

m

n
so n − pm > 0



Predator - Prey Model with Logistic Prey Growth
x ′ = ax − px2 − bxy
y ′ = −my + nxy
a, b,m, n, p > 0

F (x , y) = ax − px2 − bxy G (x , y) = −my + nx2

Fx(x , y) = a− 2px − by Gx(x , y) = ny
Fy (x , y) = −bx Gy (x , y) = −m + nx

J(x , y) =

[
Fx(x , y) Fy (x , y)
Gx(x , y) Gy (x , y)

]
=

[
a− 2px − by −bx

ny nx −m

]



J(x , y) =

[
a− 2px − by −bx

ny nx −m

]
At Critical Point (x∗, y∗) = (mn ,

a
b − pm

an ):

J(x∗, y∗) =
[
a− 2px − by −bx

ny nx −m

]

A = J(x∗, y∗) =

[
−pm

n −bm
n

na−pm
b 0

]
=

[
− −
+ 0

]
so Trace(A) < 0 and Det(A) > 0

λ =
Trace(A)±

√
(Trace(A))2 − 4Det(A)

2

Real Parts of Eigenvalues Are Negative



For Classic Lotka–Volterra Model, set p = 0
x ′ = ax − bxy

y ′ = −my + nxy
a, b,m, n, p > 0

F (x , y) = ax − bxy G (x , y) = −my + nx2

Fx(x , y) = a− by Gx(x , y) = ny
Fy (x , y) = −bx Gy (x , y) = −m + nx

J(x , y) =

[
Fx(x , y) Fy (x , y)
Gx(x , y) Gy (x , y)

]
=

[
a− by −bx
ny nx −m

]



J(x , y) =

[
a− by −bx
ny nx −m

]
At Critical Point (x∗, y∗) = (mn ,

a
b ):

J(x∗, y∗) =

[
a− by −bx
ny nx −m

]

A = J(x∗, y∗) =

[
0 −bm

n
na
b 0

]
=

[
0 −
+ 0

]
so Trace(A) = 0 and Det(A) > 0

λ =
Trace(A)±

√
(Trace(A))2 − 4Det(A)

2
= ±

√
−4Det(A)

2

so λ = ±i
√
det(A). Eigenvalues are Pure Imaginary.



Jacobian Analysis of Classic Lotka – Volterra

F (x , y) = ax − bxy Fx = a− by Fy = −bx
G (x , y) = −my + nxy Gx = ny Gy = −m + nx

J(x , y) =

(
a− by −bx
ny −m + nx

)

J(0, 0) =

(
a 0
0 −m

)
Eigenvalue λ = a with eigenvector v =

(
1
0

)
Eigenvalue λ = −m with eigenvector w =

(
0
1

)
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Jacobian Analysis of Classic Lotka – Volterra

J(x , y) =

(
a− by −bx
ny −m + nx

)

J(mn ,
a
b ) =

(
0 −bm

n
na
b 0

)
Characteristic Equation: λ2 + am = 0 so λ = ±i

√
am

Solutions of Linear System will involve sin
√
amt, cos

√
amt.

Linear System has center.
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More on Classic Lotka–Volterra

Linear System Near (mn ,
a
b )

u′ = −bm
n v

v ′ = an
b u

v ′

u′
=

an

b
u × n

−bm
v = − an2

b2m

u

v

Separate Variables: b2m v v ′ = −an2u u u′

b2mv2 = −an2u2 + C
an2u2 + b2mv2 = C
Orbit is an ellipse.

Solutions are linear combinations of sin
√
amt and cos

√
amt.

These are periodic with average values m
n (prey),

a
b (predator)
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A Surprising Result

x ′ = ax − bxy , y ′ = mxy − ny has Average Values x∗ = m
n , y

∗ = a
b

Suppose predators are birds and prey are mosquitos.
We spray insecticide to decrease further the number of mosquitos.

We now have
x ′ = ax − bxy − cx , y ′ = mxy − ny − d with c > 0, d > 0

x ′ = x(a− c − by), y ′ = y(mx − (n + d).

New Equilibrium is x∗ =
n + d

m
, y∗ =

a− c

b

WE INCREASE THE AVERAGE NUMBER OF
MOSQUITOS WHILE DECREASING THE AVERAGE

NUMBER OF BIRDS!
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Exact Orbits For Classic Lotka-Volterra

dy

dx
=

dy

dt
/
dx

dt
=

y(mx − n)

x(a− by)
=

y

a− by

mx − n

x

dy

dx
=

(
y

a− by

)(
mx − n

x

)
Separate Variables and Integrate

∫ (
a− by

y

)
dy =

∫ (
mx − n

x

)
dx
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∫ (
a− by

y

)
dy =

∫ (
mx − n

x

)
dx

∫
a

y
− b dy =

∫
m − n

x
dx

a ln y − by = mx − n ln x + C

ln ya − by = mx − ln xn + C

Exponentiate each side:

e ln y
a−by = emx−ln xn+C

e ln y
a
e−by = emxe− ln xneC

yae−by = emxx−nK(
yae−by

) (
xne−mx

)
= K
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Let u = yae−by and v = xne−mx

Then uv = K

We can graph
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f (x) = xne−mx

f ′(x) = xn−1e−mx (n −mx)

f ′′(x) = xn−2e−mx
(
m2x2 − 2mnx + n2 − n

)
▶ f (x) ≥ 0, all x with f (x) = 0 if and only if x = 0.

▶ f ′(x) > 0 if x < n/m and f ′(x) < 0 for x > n/m
Hence there is a maximum at x = n

m .

▶ f ′′(x) < 0 for n−
√
n

m < x < n+
√
n

m

and positive outside this interval. Points of Inflection at n±
√
n

m .



f (x) = xne−mx

f ′(x) = xn−1e−mx (n −mx)

f ′′(x) = xn−2e−mx
(
m2x2 − 2mnx + n2 − n

)
▶ f (x) ≥ 0, all x with f (x) = 0 if and only if x = 0.

▶ f ′(x) > 0 if x < n/m and f ′(x) < 0 for x > n/m
Hence there is a maximum at x = n

m .

▶ f ′′(x) < 0 for n−
√
n

m < x < n+
√
n

m

and positive outside this interval. Points of Inflection at n±
√
n

m .



f (x) = xne−mx

f ′(x) = xn−1e−mx (n −mx)

f ′′(x) = xn−2e−mx
(
m2x2 − 2mnx + n2 − n

)

▶ f (x) ≥ 0, all x with f (x) = 0 if and only if x = 0.

▶ f ′(x) > 0 if x < n/m and f ′(x) < 0 for x > n/m
Hence there is a maximum at x = n

m .

▶ f ′′(x) < 0 for n−
√
n

m < x < n+
√
n

m

and positive outside this interval. Points of Inflection at n±
√
n

m .



f (x) = xne−mx

f ′(x) = xn−1e−mx (n −mx)

f ′′(x) = xn−2e−mx
(
m2x2 − 2mnx + n2 − n

)
▶ f (x) ≥ 0, all x with f (x) = 0 if and only if x = 0.

▶ f ′(x) > 0 if x < n/m and f ′(x) < 0 for x > n/m
Hence there is a maximum at x = n

m .

▶ f ′′(x) < 0 for n−
√
n

m < x < n+
√
n

m

and positive outside this interval. Points of Inflection at n±
√
n

m .



f (x) = xne−mx

f ′(x) = xn−1e−mx (n −mx)

f ′′(x) = xn−2e−mx
(
m2x2 − 2mnx + n2 − n

)
▶ f (x) ≥ 0, all x with f (x) = 0 if and only if x = 0.

▶ f ′(x) > 0 if x < n/m and f ′(x) < 0 for x > n/m
Hence there is a maximum at x = n

m .

▶ f ′′(x) < 0 for n−
√
n

m < x < n+
√
n

m

and positive outside this interval. Points of Inflection at n±
√
n

m .



f (x) = xne−mx

f ′(x) = xn−1e−mx (n −mx)

f ′′(x) = xn−2e−mx
(
m2x2 − 2mnx + n2 − n

)
▶ f (x) ≥ 0, all x with f (x) = 0 if and only if x = 0.

▶ f ′(x) > 0 if x < n/m and f ′(x) < 0 for x > n/m
Hence there is a maximum at x = n

m .

▶ f ′′(x) < 0 for n−
√
n

m < x < n+
√
n

m

and positive outside this interval. Points of Inflection at n±
√
n

m .



Graph of xne−mx =
xn

emx
, x ≥ 0 is

▶ Increasing and concave up on [0, n−
√
n

m ]

▶ Increasing and concave down on [n−
√
n

m , n
m ].

▶ Decreasing and concave down on [ nm , n+
√
n

m ],

▶ Decreasing and concave up on [n+
√
n

m ,∞).

▶ limx→∞ f (x) = 0 (Repeated Use of l’Hôpital’s Rule ).





Examples of Predator – Prey With Logistic Prey

a = 1, p = 1/2, b = 1/2,m = 1/4, n = 1/2
(x∗, y∗) =

(
1
2 ,

3
2

)
J
(
1
2 ,

3
2

)
=

(
−1

4 −1
4

3
4 0

)
Characteristic Polynomial: λ2 + 1

4λ+ 3
16

Eigenvalues: λ = −1±i
√
11

8



Examples of Predator – Prey With Logistic Prey

a = 16, p = 5/2, b = 7/8,m = 10, n = 2
(x∗, y∗) = (5, 4)

J(5, 4) =

(
−25

2 −35
8

8 0

)
Characteristic Polynomial: λ2 + 25

2 λ+ 35

Eigenvalues: λ = −25±
√
65

4
Both eigenvalues are negative.



The Remaining Case

a

p
<

m

n



The Fragility of Being a Center

Consider X’ = AX with A =

(
36 80
−50 −36

)
Characteristic Polynomial: λ2 + 2704 so eigenvalues are λ = ±52i
Suppose we replace 36 with 36 + ϵ where ϵ is a small number.

A =

(
36 + ϵ 80
−50 −36

)
Characteristic Polynomial: λ2 − ϵλ+ 2704− 36ϵ so eigenvalues are

λ = ϵ±
√
ϵ2+144ϵ−10816

2
ϵ small positive means real part ϵ

2 > 0: Spiral Source
ϵ small negative means real part ϵ

2 < 0: Spiral Sink



Poincaré – Bendixson Theorem

Henri Poincaré Ivar Bendixson
1854 – 1912 1861 –1935


