MATH 226: Differential Equations

Class 28: Wednesday, April 23, 2025



ts

Periodic Solutions and Limit Cycles
Converting From Cartesian To Polar
MATLAB: LimitCycle (Handouts Folder)
Maple: Limit Cycles (Handouts Folder)



Schedule

Today: Converting Between Cartesian and Polar
Coordinates

Periodic Solutions and Limit Cycles

Friday: Chaos and Strange Attractors



Phase Plane for a Lotka-Volterra Predator - Prey
with Logistic Prey Growth Model a/p >m/n
x' = ax —px? = bxy

y' = —my+nxy

a=1Db=.5p=.5m=.25n=.5
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Phase Plane for a Lotka-Volterra Predator - Prey
with Logistic Prey Growth Model a/p >m/n

x' = ax — px?® = bxy

y' = —my+nxy

a=1b=.5p=.5m=.25n=.5
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Limit Cycles
A New Behavior Not Seen in Linear Systems

X'=y+x(1-x%-y?)

y'=-x+y(1-x2-y?
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MATLAB Code

[x,y]=meshgrid(-3:.2:3,-3:.2:3);
xprime = y + x .* (1 - x.*x - y.*y);
yprime = -x + y .* (1 - x.*x - y.*y);
L = sqgrt(xprime.”2 + yprime.”"2);
dyu=yprime./L;

dxu=xprime./L;

quiver (x,y,dxu,dyu, 'r'")
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DEplot( {odel, ode2}, [x(1). (1) 1=0.10,x==3 3, y= 3\IX(0) =3 y(0) -3 [x(0)~ -3
$(01=3), [%(0)=3,9(0)= =3 [x(0)==3,¥(0)= -3|, [x(O) =1,(0)=3]]. necolor
~ [blue, ved. green, magenta, black), avraws = none, animate — rue )
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Polar Coordinate Version

o:i¢3 =Pt = (1) - [l -0
oded = theta'[f) =

= DEpdol( {ode3, oded ), (1), theta(¢) ], ¢=0..10, [

theta(0) = %,:[0) =5}, [theta{) =Pi, r(0) = 61, | theta(0) =%,rtﬂ) = .|], lumm) B ?,
{0) :4”,armw.7: none, linecolor = | burgundy, blue, wd"gnzm]] :
conv == plottools:-transform | (a, b) — [a*cos(b), a*sin(b) ]) =

with plots) :
display|conv( P1), axiscoordinates = polar |;




Limit Cycles

X =y+x(1—x2—y2)
y = —x+y({d—x2—y2)

In Polar Coordinates
r=r1-r),0 =-1



Converting From Cartesian To Polar

¥ =rcost
y =rsinf
y-axis P
r y
0 \ R X-axis
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Converting From Cartesian To Polar

X =rcosf
y =rsinf

Use Product and Chain Rules to Obtain

dx dr o0+ p deo
I dtcos r(—sin )

dy dr o+ p 9
TR sin r(cos )dt



L. =+ yZ =~

= (r cos 6) [E cos 0 + r(—sin0) %] + (rsin 0) [% sin 6 +

r(cos@)ﬁ]
" cos?0 6cos0%2 +r L sin2
=7 o8 72 sin @ cos Tt rdtsm
+ 7r25sin 6 cos § —
dt
_ . ar 2 dar 2 — .4
= 1 _-cos 9+rd sin%6 = rdt[cos 0 + sin?0] = r—
ar ay
Th r——x—+
S ar at Y adl




g dar . 2.2d9)(dT. 2 2(19)
—(r dtsm@cose resin Gdt T dtschosH+r cos Bdt

do
= —r2(sin?0 + COSZB)E

), 46
= —r¢l—
dt >
_.280 “©_ 9
Thus i dr dt




=y+x——
at 24y2
Example: Convert 1 - -
dat Xty x2+y2
Solution:

ax ay_ 2 _
X dt+ydt xy +x
=x?+y?-1
Hence r & = r2 — 1
dt

andy%—xi—f=(y2+xy— -

—y2 4 x2 =2
So —r2% _

= r2 which yields & = —1
dt dt
Z—T =r2-1
The converted system looks like dtg

dt

(-

yx )
x2+y?

2 x%+y?
x2+y?




Transforming Systems of Differential Equations From
Cartesian ToPolar Coordinates and Polar To Cartesian

xx' +yy =rr
yx' —xy = —-r?@’

Write As:
e o ey

which is equivalent to

b= Sl



Periodic Solutions and Limit Cycles
Definitions: Alimit cycle is a closed trajectory in the phase plane
such thatothernonclosed trajectories spiral towardeitherfromthe
inside or the outside (or both).
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trajectory as t — <, then the limit cycle is an asymptotically
stable limit cycle.



Periodic Solutions and Limit Cycles
Definitions: Alimit cycle is a closed trajectory in the phase plane
such thatothernonclosed trajectories spiral towardeitherfromthe
inside or the outside (or both).

Orbital Stability: If all trajectories that start near a closed
trajectory (both inside and outside) spiral toward the closed
trajectory as t — <, then the limit cycle is an asymptotically
stable limit cycle.

If the trajectories on one side of the limit cycle spiral toward it
while those on the other side move away as t — «, then the limit
cycle is semistable.



Periodic Solutions and Limit Cycles
Definitions: Alimit cycle is a closed trajectory in the phase plane
such thatothernonclosed trajectories spiral towardeitherfromthe
inside or the outside (or both).

Orbital Stability: If all trajectories that start near a closed
trajectory (both inside and outside) spiral toward the closed
trajectory as t — <, then the limit cycle is an asymptotically
stable limit cycle.

If the trajectories on one side of the limit cycle spiral toward it
while those on the other side move away as t — «, then the limit
cycle is semistable.

Ifthe trajectories on both sides ofthe closed trajectory spiral away
as t— «, then it is called unstable.



Theorem 1: Let the functions ' and G have continuous
first partial derivatives in a domain D of the xy-plane.
A closed trajectory of the system

= = Fxy)
Y=g T

’ d
y' = ==Gxy)

must necessarily enclose at least one critical point.

Moreover, if it encloses only one critical point, that
point cannot be a saddle point.



Definition: Atwo-dimensionaldomainis simply connected ifit
hasno holes; equivalently, any closed loop canbe shrunktoa
point in the domain.

Simply connected  Non-simply connected

Theorem 2: Let the functions F and G have continuous first
partial derivativesina simply connected domain D ofthe xy-plane.
If Fx + Gy has the same sign throughout D, then there is no
closed trajectory of the system

!

x' = ——F(xy)y = ——G(xy)

lying entirely in D.



Green’s Theorem in the Plane: If C is a sufficiently
smooth simple closed curve that is traversed
counterclockwise around a region R enclosed by C, then

j [F(,y) - GCoy)] = ff [E.(x,7) + G, (x, )] dxdy
C R

If F and G are continuous functions with continuous first
partial derivatives



Theorem 3 (Poincaré-Bendixson Theorem): Let the functions
F and G have continuous first partial derivatives in a domain D of
the xy-plane.

Let D1 be abounded subdomain in D, and let R be the region
that consists of D1 plus its boundary (all points of R are in D).
Suppose that R contains no critical points of the system

f [F(x,y) - G(x,y)] = ff [E.(t,y) + G, (x, )] dxdy
C R



If there exists a constant f such that x = @(f), y = w(t) is a
solution of the system that exists and stays in R for all t = o,
then either
x = @(f), y = w(t) is a periodic solution with closed trajectory or
x = @(f), y = w(t) has a trajectory that spirals toward a closed
trajectoryas t — =
In either case, the system has a periodic solution in R.



Poincar ¢ — Bendixson Theorem

Henri Poincaré Ivar Bendixson
1854-1912 1861 —1935
”Sur les courbes définies ”Sur les courbes définies par
une équation différentielle”, par des équations différentielles”
Ocuvres, 1, Paris. Acta Mathematica, Springer Netherlan

(1892) 24 (1): 1888.
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