MATH 226 Differential Equations

Class 29: Friday, April 25, 2025



Notes on Assignment 19
Assignment 20
Maple: Chaos
Butterfly Attractor
Team Project 3: Epidemic Models



The Fragility of Being a Center

) . ) (36 80
Consider X' = AX with A = (_50 —36)

Characteristic Polynomial: A% + 2704 so eigenvalues are A = +52
Suppose we replace 36 with 36 + ¢ where € is a small number.
A (36 +¢ 80 )

—50 —36
Characteristic Polynomial: A% — e\ + 2704 — 36¢
so eigenvalues are

€ + V€2 + 144¢ — 10816

A=
2

¢ small positive means real part § > 0: Spiral Source
€ small negative means real part 5 < 0: Spiral Sink



Chaos and Strange
Attractors:
The Lorenz Equations



Edward Norton Lorenz
(May 23, 1917 - April 16, 2008)
American mathematician and meteorologist
Pioneer of chaos theory
Discovered the strange attractor concept
Coined the term Butterfly Effect.




At one point | decided to repeat some of the computations in order
to examine what was happening in greater detail. | stopped the
computer, typed in a line of numbers that it had printed out a
while earlier, and set it running again. | went down the hall for a
cup of coffee and returned after about an hour, during which time
the computer had simulated about two months of weather. The
numbers being printed were nothing like the old ones. |
immediately suspected a weak vacuum tube or some other
computer trouble, which was not uncommon, but before calling for
service | decided to see just where the mistake had occurred,
knowing that this could speed up the servicing process. Instead of
a sudden break, | found that the new values at first repeated the
old ones, but soon afterward differed by one and then several units
in the last decimal place. . . . The numbers | had typed in were
not the exact original numbers, but were the rounded off values
that had appeared in the original printout. The initial round-off
errors were the culprits; they were steadily amplifying until they
dominated the solution. In today’s terminology, there was chaos.



JOURNAL OF THE ATMOSPHERIC SCIENCES

Deterministic Nonperiodic Flow!

Epwarp N. LorEnZ

M assechusetés Institute of Tecknology
(Manuscript received 18 November 1962, in revised form 7 January 1963}

ABgTRACT

Finite systems of deterministic crdinary noniinear differential equations may be designed to represent
forced dissipative hydrodynamic fiow. Solutions of these equations can be identified with trajectories in
phase space. For these systems with hounded solutions, it is found that nonperiodic solutions are ordinarily
unstable with respect to small modifications, so that slightly differing initial states can evolve into consider-
ably different states, Systems with hounded solutions are shown to possess bounded numerical solutions.

A simple system representing cellular convection i solved numerically. All of the solutions are found
to be unstable, and almest all of them are nonperiodic.

The feasibility of very-long-range weather prediction is examined in the light of these results.

Lorenz Biography


http://mathshistory.st-andrews.ac.uk/Biographies/Lorenz_Edward.html
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The Essence of

Edward Lorens

Can the Flap of a Butterfly’s Wings in Brazil
Cause a Tornado in Texas a Week Later?
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Chaos and Strange Attractors:
The Lorenz Equations
dx/dt = o(—x+y)=—ox+ oy
dy/dt = rx —y — xz
dz/dt = —bz + xy

Interesting Values:
oc=10,b=8/3,r =28



dx/dt = —ox + oy = F(x,y, 2)
dy/dt =rx —y — xz = G(x,y,z)
dz/dt = —bz + xy = H(x,y, z)

x: intensity of fluid motion
v, z: Temperature variations in horizontal, vertical
o, b: material and geometric properties of fluid layer
r is proportional to change in temperature between top and
bottom of fluid layer.

The Lorenz equations also arise in simplified models for lasers,
dynamos, thermosyphons, brushless DC motors, electric circuits,
and chemical reactions.



dx/dt = —ox+ oy = F(x,y,z)
dy/dt =rx —y — xz = G(x,y,2)
dz/dt = —bz + xy = H(x,y, z)

Critical Points
dx/dt=0: y =x
and dy/dt = 0:
rx —y —xz=impliesrx —x —xz=0sox(r—1—2z)=0
Thusx=0o0rz=r-1
and dz/dt = 0 implies —bz +xy =0so —bz +x?>=0or z = X—;

Note also that dx/dt > 0 when y > x

and dz/dt > 0 when z < X—bZ
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Conditions for a Critical Point
2
y=x,z=%,x=0o0rz=r—1

b
Py =(x=0,y =0,z=0)
Py=(x=+/b(r—1),y =/b(r-1),z=r-1
Py=(x= /B Ty = /B Tz=r1

Note: If r < 1, then no P, or P;

For b=28/3 and r = 28, P, = (61/2,61/2,27)



dx/dt = —ox + oy = F(x,y, z)
dy/dt =rx —y — xz = G(x,y, z)
dz/dt = —bz + xy = H(x,y, z)

Jacobian Matrix

Fx Fy Fz
Gx Gy Gz
Hx Hy Hz



Jacobian

-0 0o 0
r -1 —x
y x —b

At Origin (0,0,0):



Expand along third row to find determinant

—0—A o 0
A—\ = r —1-A 0
0 0 —b— A
det(A— M) =—(b+ NN+ (L + o)\ + (0 — o))
Eigenvalues:
A =—b
Ny = —(140)+ (1;0)2_40(1_@ _ —(1+0)+\/2(1—0)w

s = —(140)—/(1+0)2—4o(1—r)  —(1+0)—/(1—0)2+4or
= 2 = 2

Note: if o and r are positive, then all eigenvalues are real and
distinct
A1 and A3 are negative
A2 could be positive or negative
For our example, with 0 = 10 and b = 8/3, we have
A1 = -8/3

\, — —1l+/BIF40r
2= 2

\q — —11=v/81+40r
3= 2



Ny — —11++/81+40r
2 — 2

Ao will be positive if and only if
81 + 40r > 121; thatis, r > 1

Thus, origin is asymptotically stable

if r <1
and unstable if r > 1



In general, examine sign of \,
—(14+0)++/(1—0)2 +4or
which is positive if
V(1 —0)2+40r > (1+0)
Squaring: (1 — 0)? +4or > (1 + 0)?
1—20+0°+40r >1+20+0°
dor > 4o
r>1
So r = 1 is a critical value for the
origin.




Critical Points
P1 =(0,0,0) and if r > 1:
P, = (\/b(r — 1), \/b(r — 1), r — 1)
P; = (—+/b(r —1), —/b(r — 1), r — 1)
If r <1, then origin is only critical point.
Suppose r > 1 so we have other critical points
Recall

—0 o 0
A= r—z -1 —x
y x —b

With x =y = /b(r —1),z=r — 1, we have

—0 o 0
1 -1 —+/b(r—1)
Vb(r—1) /b(r—1) —b

A—




At x=y =+/b(r—1),z=r—1, we have

—0 o 0
A= 1 —1 —/b(r—1)
Vb(r—1) +/b(r—1) —b
Let c =10 and b =38/3
The characteristic polynomial is
3 2
p(N) = 3A3+41) +8(r—§10))\+160(r—1)
0<r<1 P1 = (0,0,0) is unique critical point;

asymptotically stable
1 <r<1.3456 p(A) has 3 negative roots
P>, P3 asymptotically stable; P; unstable
1.3456 < r < 24.737 p(A) has 1 negative root; P; unstable
P,, P3 asymptotically stable (spiral in);
24737 < r 1 negative root; P1, P>, P3 unstable;
Most orbits near Py, P spiral away



The characteristic polynomial is
3A3+41X2+8(r+10)A+160(r—1
p(\) = ( . ) (r=1)

so the sum of the eigenvalues = -4/3.
When A = —41/3 is an eigenvalue, real parts of the others are 0.
Roots: \*,a+ bi and a — bi; sum of roots is A* + 2a.
For A > —41/3,a < 0 and for A < —41/3,a >0
Find r when p(—41/3) = 0:

p(—41/3) = =3100H2r o6 p — 470 — 24737



Q>



