MATH 226 Differential Equations

Class 34: Wednesday, May 9, 2025

Assignment 23

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Announcements

Announcements

Project 3 Due Friday

Course Response Forms In Class Next Monday Bring Laptop/SmartPhone

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Announcements

Project 3 Due Friday

Course Response Forms In Class Next Monday Bring Laptop/SmartPhone

Final Exam Friday, May 16: 9 AM - Noon

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Ways To Study Differential Equations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Numerical Approximations to Solution
- Linearize Near Equilibrium Points
- Qualitative Analysis

Ways To Study Differential Equations

- Numerical Approximations to Solution
- Linearize Near Equilibrium Points
- Qualitative Analysis
- SOLVE THE EQUATION

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example

$$y' = y$$
 with $y(0) = 1$

・ロト・(四)・(日)・(日)・(日)・(日)

Example

$$y' = y$$
 with $y(0) = 1$

$$y'(t) = y(t)$$

・ロト・(四)・(日)・(日)・(日)・(日)

Example y' = y with y(0) = 1 y'(t) = y(t) $\frac{y'(t)}{y(t)} = 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

$$y' = y$$
 with $y(0) = 1$

$$y'(t)=y(t)$$

$$\frac{y'(t)}{y(t)} = 1$$

Integrate Both Sides With Respect to t

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$y' = y$$
 with $y(0) = 1$

$$y'(t)=y(t)$$

$$\frac{y'(t)}{y(t)} = 1$$

Integrate Both Sides With Respect to t

$$\ln y = t + C$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$y' = y$$
 with $y(0) = 1$

$$y'(t)=y(t)$$

$$\frac{y'(t)}{y(t)} = 1$$

Integrate Both Sides With Respect to t

 $\ln y = t + C$

Exponentiate

$$y = Ce^t$$

Use Initial Condition: y = 1 when t = 0

$$1 = Ce^0 = C \times 1 = C$$

 $y = e^t$ is the unique solution

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ・ 今 Q ()・

How Do We Actually Calculate e^t for a specific t? In particular, what is the value of $e^1 = e$?

How Do We Actually Calculate e^t for a specific t? In particular, what is the value of $e^1 = e$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What Is Going On Inside The Calculator?

Power Series Approach

Assume solution can be represented by a power series

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + ... = \sum_{n=0}^{\infty} a_n x^n$$

Power Series Approach

Assume solution can be represented by a power series

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + ... = \sum_{n=0}^{\infty} a_n x^n$$

Then we have an expression for the solution if we can determine what the constant coefficients $a_0, a_1, a_2, ...$ are.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Power Series Approach

Assume solution can be represented by a power series

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + ... = \sum_{n=0}^{\infty} a_n x^n$$

Then we have an expression for the solution if we can determine what the constant coefficients $a_0, a_1, a_2, ...$ are. Example: Solve

$$y' = y$$
 with initial value $y(0) = 1$
With

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + .a_4 x^4 + a_5 x_2^5 \dots$$

we have

$$y' = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + \dots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Since y' = y and $y = a_0 + a_1x + a_2x^2 + a_3x^3 + .a_4x^4 + a_5x^5...$ $y' = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + ...$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

we can equate coefficients

 $a_1 = a_0$ $2a_2 = a_1$ $3a_3 = a_2$... $na_n = a_{n-1}$

Since y' = y and $y = a_0 + a_1x + a_2x^2 + a_3x^3 + .a_4x^4 + a_5x^5...$ $y' = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + ...$

we can equate coefficients $a_1 = a_0$ $2a_2 = a_1$ $3a_3 = a_2$. . . $na_n = a_{n-1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $a_1 = a_0$ $a_2 = a_1$ $a_3 = a_2$... $a_n = a_{n-1}$ $a_1 = a_0$ $a_2 = \frac{a_1}{2}$ $a_3 = \frac{a_2}{3}$... $a_n = \frac{a_{n-1}}{n}$

Since y' = y and $y = a_0 + a_1x + a_2x^2 + a_3x^3 + .a_4x^4 + a_5x_2^5...$ $y' = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + ...$

we can equate coefficients $a_1 = a_0$ $2a_2 = a_1$ $3a_3 = a_2$ \dots $na_n = a_{n-1}$ $a_1 = a_0$ $a_2 = \frac{a_1}{2}$ $a_3 = \frac{a_2}{3}$ \dots $a_n = \frac{a_{n-1}}{n}$ $a_1 = a_0$

$$a_{2} = \frac{a_{1}}{2} = \frac{a_{0}}{2}$$

$$a_{3} = \frac{a_{2}}{3} = \frac{a_{0}}{3 \times 2} = \frac{a_{0}}{3!}$$

$$a_{4} = \frac{a_{3}}{4} = \frac{a_{0}}{4 \times 3!} = \frac{a_{0}}{4!}$$

$$a_n = \frac{a_{n-1}}{n} = \frac{a_0}{n \times (n-1)!} = \frac{a_0}{n!}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Since v' = v and $y = a_0 + a_1x + a_2x^2 + a_3x^3 + .a_4x^4 + a_5x^5...$ $v' = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + \dots$

we can equate coefficients $a_1 = a_0$ $2a_2 = a_1$ $3a_3 = a_2$... $na_n = a_{n-1}$ $a_1 = a_0$ $a_2 = \frac{a_1}{2}$ $a_3 = \frac{a_2}{3}$... $a_n = \frac{a_{n-1}}{n}$ $a_1 = a_0$

$a_2 = \frac{a_1}{2} = \frac{a_0}{2}$	
$a_3 = \frac{a_2}{3} = \frac{a_0}{3 \times 2} = \frac{a_0}{3!}$	
$a_4 = \frac{a_3}{4} = \frac{a_0}{4 \times 3!} = \frac{a_0}{4!}$	

$$a_n = \frac{a_{n-1}}{n} = \frac{a_0}{n \times (n-1)!} = \frac{a_0}{n!}$$

So the solution of $y' = y$ is

$$y = a_0 \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + \dots \right)$$

Solution to y' = y with y(0) = 1 has the form

$$y = a_0 \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + \dots \right)$$

Evaluating at x = 0 gives $1 = y(0) = a_0(1 + 0 + 0 + 0 + ...) = a_0$ so $a_0 = 1$ and

$$y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution to y' = y with y(0) = 1 has the form

$$y = a_0 \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + \dots \right)$$

Evaluating at x = 0 gives $1 = y(0) = a_0(1 + 0 + 0 + 0 + ...) = a_0$ so $a_0 = 1$ and

$$y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + \dots$$

But we also know the solution is $y = e^x$. Thus

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!} + \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$P_n(x) = \sum_{k=0}^{n} \frac{x^k}{k!}$$

$$\frac{n \quad P_n(1)}{0 \quad 1.0}$$

$$1 \quad 2.0$$

$$2 \quad 2.50000$$

$$3 \quad 2.6666666667$$

$$4 \quad 2.708333333$$

$$5 \quad 2.716666667$$

$$6 \quad 2.718055556$$

$$7 \quad 2.718253968$$

$$8 \quad 2.718278770$$

$$9 \quad 2.718281526$$

$$10 \quad 2.718281801$$

$$11 \quad 2.718281826$$

$$12 \quad 2.718281828$$

 $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + a_{n+1} x^{n+1} + a_{n+2} x^{n+2} + \dots$

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + a_{n+1} x^{n+1} + a_{n+2} x^{n+2} + \dots$$

 $y' = a_1 + 2a_2x + \dots + na_nx^{n-1} + (n+1)a_{n+1}x^n + (n+2)a_{n+2}x^{n+1}$

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + a_{n+1} x^{n+1} + a_{n+2} x^{n+2} + \dots$$

$$y' = a_1 + 2a_2x + \dots + na_nx^{n-1} + (n+1)a_{n+1}x^n + (n+2)a_{n+2}x^{n+1}$$

$$xy' = a_1x + 2a_2x^2 + \dots + na_nx^n + (n+1)a_{n+1}x^{n+1} + (n+2)a_{n+2}x^{n+2} + \dots$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + a_{n+1} x^{n+1} + a_{n+2} x^{n+2} + \dots$$
$$y' = a_1 + 2a_2 x + \dots + na_n x^{n-1} + (n+1)a_{n+1} x^n + (n+2)a_{n+2} x^{n+1}$$
$$xy' = a_1 x + 2a_2 x^2 + \dots + na_n x^n + (n+1)a_{n+1} x^{n+1} + (n+2)a_{n+2} x^{n+2} + \dots$$
$$y'' = 2a_2 + \dots + n(n-1)a_n x^{n-2} + n(n+1)a_{n+1} x^{n-1} + (n+1)(n+2)a_{n+2} x^n + \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + a_{n+1} x^{n+1} + a_{n+2} x^{n+2} + \dots$$
$$y' = a_1 + 2a_2 x + \dots + na_n x^{n-1} + (n+1)a_{n+1} x^n + (n+2)a_{n+2} x^{n+1}$$
$$xy' = a_1 x + 2a_2 x^2 + \dots + na_n x^n + (n+1)a_{n+1} x^{n+1} + (n+2)a_{n+2} x^{n+2} + \dots$$
$$y'' = 2a_2 + \dots + n(n-1)a_n x^{n-2} + n(n+1)a_{n+1} x^{n-1} + (n+1)(n+2)a_{n+2} x^n + \dots$$

Coefficient of x^n in y + xy' + y is $a_n + na_n + (n+1)(n+2)a_{n+2}$ $= a_n(1+n) + (n+1)(n+2)a_{n+2} = (n+1)[a_n + (n+2)a_{n+2}]$

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + a_{n+1} x^{n+1} + a_{n+2} x^{n+2} + \dots$$
$$y' = a_1 + 2a_2 x + \dots + na_n x^{n-1} + (n+1)a_{n+1} x^n + (n+2)a_{n+2} x^{n+1}$$
$$xy' = a_1 x + 2a_2 x^2 + \dots + na_n x^n + (n+1)a_{n+1} x^{n+1} + (n+2)a_{n+2} x^{n+2} + \dots$$
$$y'' = 2a_2 + \dots + n(n-1)a_n x^{n-2} + n(n+1)a_{n+1} x^{n-1} + (n+1)(n+2)a_{n+2} x^n + \dots$$
Coefficient of x^n in $y + xy' + y$ is

 $a_n + na_n + (n+1)(n+2)a_{n+2}$

 $= a_n(1+n) + (n+1)(n+2)a_{n+2} = (n+1)[a_n + (n+2)a_{n+2}]$ But all coefficients must be 0. Thus, we have $a_{n+2} = a_{n+2}$ Our Equation: y'' + xy' + y = 0 has solution $y = a_0 + a_1x + a_2x^2 + ... + a_nx^n + a_{n+1}x^{n+1} + a_{n+2}x^{n+2} + ...$ where $a_{n+2} = -\frac{a_n}{n+2}$

Our Equation: y'' + xy' + y = 0 has solution $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + a_{n+1} x^{n+1} + a_{n+2} x^{n+2} + \dots$ where $a_{n+2} = -\frac{a_n}{n+2}$ Thus $a_2 = -\frac{a_0}{2}, a_4 = -\frac{a_2}{4} = +\frac{a_0}{2 \cdot 4}, a_6 = -\frac{a_0}{2 \cdot 4 \cdot 6}, \dots$ $a_3 = \frac{a_1}{3}, a_5 = +\frac{a_1}{3 \cdot 5}, a_7 = -\frac{a_1}{3 \cdot 5 \cdot 7}, \dots$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Our Equation: y'' + xy' + y = 0 has solution $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + a_{n+1} x^{n+1} + a_{n+2} x^{n+2} + \dots$ where $a_{n+2} = -\frac{a_n}{n+2}$ Thus $a_2 = -\frac{a_0}{2}, a_4 = -\frac{a_2}{4} = +\frac{a_0}{2 \cdot 4}, a_6 = -\frac{a_0}{2 \cdot 4 \cdot 6}, \dots$ $a_3 = \frac{a_1}{3}, a_5 = +\frac{a_1}{3 \cdot 5}, a_7 = -\frac{a_1}{3 \cdot 5 \cdot 7}, \dots$ We can write solution as $y = a_0 \left[1 - \frac{1}{2}x^2 + \frac{1}{2 \cdot 4}x^4 - \frac{1}{2 \cdot 4 \cdot 6}x^6 + \dots + \frac{(-1)^n}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}x^{2n} + \dots \right]$ + $a_1 \left[x - \frac{1}{3}x^3 + \frac{1}{3 \cdot 5}x^5 + \dots + \frac{(-1)^{n+1}}{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1)}x^{2n-1} + \dots \right]$ where $a_0 = y(0)$ and $a_1 = y'(0)$.

Our Equation:
$$y'' + xy' + y = 0$$
 has solution

$$y = a_0 \left[1 - \frac{1}{2}x^2 + \frac{1}{2 \cdot 4}x^4 - \frac{1}{2 \cdot 4 \cdot 6}x^6 + \dots + \frac{(-1)^n}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}x^{2n} + \dots \right]$$

$$+ a_1 \left[x - \frac{1}{3}x^3 + \frac{1}{3 \cdot 5}x^5 + \dots + \frac{(-1)^{n+1}}{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1)}x^{2n-1} + \dots \right]$$

$$y = a_0 f(x) + a_1 g(x)$$

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}$$

$$g(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1)}$$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + ... + a_n x^n + a_{n+1} x^{n+1} + ...$$

Note first: $a_0 = \frac{2}{5}$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + a_{n+1} x^{n+1} + \dots$$

Note first: $a_0 = \frac{2}{5}$ Write equation as y' - 5y = 13Coefficient of x^n in -5y is $-5a_n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + a_{n+1} x^{n+1} + \dots$$

Note first: $a_0 = \frac{2}{5}$ Write equation as y' - 5y = 13Coefficient of x^n in -5y is $-5a_n$ Coefficient of x^n in y' is $(n + 1)a_{n+1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + a_{n+1} x^{n+1} + \dots$

Note first: $a_0 = \frac{2}{5}$ Write equation as y' - 5y = 13Coefficient of x^n in -5y is $-5a_n$ Coefficient of x^n in y' is $(n+1)a_{n+1}$ Constant Term in y' - 5y is $a_1 - 5a_0$ which equals 13

A D N A 目 N A E N A E N A B N A C N

 $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + a_{n+1} x^{n+1} + \dots$

Note first: $a_0 = \frac{2}{5}$ Write equation as y' - 5y = 13Coefficient of x^n in -5y is $-5a_n$ Coefficient of x^n in y' is $(n+1)a_{n+1}$ Constant Term in y' - 5y is $a_1 - 5a_0$ which equals 13 So $a_1 = 13 + 5a_0 = 13 + 5(\frac{2}{5}) = 15 = 3 \times 5$

A D N A 目 N A E N A E N A B N A C N

 $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + a_{n+1} x^{n+1} + \dots$

Note first: $a_0 = \frac{2}{5}$ Write equation as y' - 5y = 13Coefficient of x^n in -5y is $-5a_n$ Coefficient of x^n in y' is $(n+1)a_{n+1}$ Constant Term in y' - 5y is $a_1 - 5a_0$ which equals 13 So $a_1 = 13 + 5a_0 = 13 + 5(\frac{2}{5}) = 15 = 3 \times 5$ So $(n+1)a_{n+1} - 5a_n = 0$ for $n \ge 1$

A D N A 目 N A E N A E N A B N A C N

 $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + a_{n+1} x^{n+1} + \dots$

Note first: $a_0 = \frac{2}{5}$ Write equation as v' - 5v = 13Coefficient of x^n in -5v is $-5a_n$ Coefficient of x^n in y' is $(n+1)a_{n+1}$ Constant Term in y' - 5y is $a_1 - 5a_0$ which equals 13 So $a_1 = 13 + 5a_0 = 13 + 5\left(\frac{2}{5}\right) = 15 = 3 \times 5$ So $(n+1)a_{n+1} - 5a_n = 0$ for $n \ge 1$ Thus Recurrence Relation is $a_{n+1} = \frac{5a_n}{n+1}$, for $n \ge 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

$$\begin{array}{cccc}
n & a_{n+1} = \frac{5a_n}{n+1} \\
\hline
1 & a_2 = \frac{1}{2} (5a_1) = \frac{1}{2} (5 \times 3 \times 5) = 3 \times \frac{5^2}{2!} \\
2 & a_3 = \frac{1}{3} (5a_2) = \frac{1}{3} (5 \times 3 \times \frac{5^2}{2!}) = 3 \times \frac{5^3}{3!} \\
3 & a_4 = \frac{1}{4} (5a_3) = 3 \times \frac{5^4}{4!} \\
4 & a_5 = \frac{1}{5} (5a_4) = 3 \times \frac{5^5}{5!}
\end{array}$$

$$\begin{array}{c} \dots \\ n-1 \quad a_n = \frac{1}{n} \left(5a_{n-1} \right) = 3 \times \frac{5^n}{n!} \end{array}$$

$$\frac{n}{1} = \frac{a_{n+1}}{a_2} = \frac{5a_n}{2} (5a_1) = \frac{1}{2} (5 \times 3 \times 5) = 3 \times \frac{5^2}{2!}$$

$$2 = a_3 = \frac{1}{3} (5a_2) = \frac{1}{3} (5 \times 3 \times \frac{5^2}{2!}) = 3 \times \frac{5^3}{3!}$$

$$3 = a_4 = \frac{1}{4} (5a_3) = 3 \times \frac{5^4}{4!}$$

$$4 = a_5 = \frac{1}{5} (5a_4) = 3 \times \frac{5^5}{5!}$$

$$\dots$$

$$n - 1 = a_n = \frac{1}{n} (5a_{n-1}) = 3 \times \frac{5^n}{n!}$$
Thus $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \dots a_n x^n + \dots$

$$= \frac{2}{5} + 3 \times 5x + 3 \times \frac{(5x)^2}{2!} + 3 \times \frac{(5x)^3}{3!} + \dots + 3 \times \frac{(5x)^n}{n!} + \dots$$

$$y = \frac{2}{5} + 3 \times 5x + 3 \times \frac{(5x)^2}{2!} + 3 \times \frac{(5x)^3}{3!} + \dots + 3 \times \frac{(5x)^n}{n!} + \dots$$

$$y = \frac{2}{5} + 3 \times 5x + 3 \times \frac{(5x)^2}{2!} + 3 \times \frac{(5x)^3}{3!} + \dots + 3 \times \frac{(5x)^n}{n!} + \dots$$
$$= \frac{2}{5} + 3 \times \left(5x + \frac{(5x)^2}{2!} + \frac{(5x)^3}{3!} + \dots + \frac{(5x)^n}{n!} + \dots\right)$$

▲□▶▲□▶▲≡▶▲≡▶ = 三 のへ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

|▲□▶ ▲圖▶ ▲差▶ ▲差▶ | 差|||の久())

y' - 5y = 13. Integrating Factor is e^{-5x}

$$y' - 5y = 13$$
. Integrating Factor is e^{-5x}

$$\left(ye^{-5x}\right)' = 13e^{-5x}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$y' - 5y = 13$$
. Integrating Factor is e^{-5x}

$$\left(ye^{-5x}\right)' = 13e^{-5x}$$

$$ye^{-5x} = 13\frac{-1}{5}e^{-5x} + C$$

$$y' - 5y = 13$$
. Integrating Factor is e^{-5x}

$$\left(ye^{-5x}\right)' = 13e^{-5x}$$

$$ye^{-5x} = 13\frac{-1}{5}e^{-5x} + C$$

$$y = -\frac{13}{5} + Ce^{5x}$$

$$y' - 5y = 13$$
. Integrating Factor is e^{-5x}

$$\left(ye^{-5x}\right)' = 13e^{-5x}$$

$$ye^{-5x} = 13\frac{-1}{5}e^{-5x} + C$$

$$y = -\frac{13}{5} + Ce^{5x}$$

Using
$$y(0) = \frac{2}{5}$$
 yields $C = 3$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Frequently Encountered Second Order Differential Equations in Applications

 $\mathbf{P}(\mathbf{x})\mathbf{y}'' + \mathbf{Q}(\mathbf{x})\mathbf{y}' + \mathbf{R}(\mathbf{x})\mathbf{y} = \mathbf{0}$

Airy	y'' - xy = 0
Bessel	$x^2y'' + xy' + (x^2 - \nu^2)y = 0$
Chebyshev	$(1 - x^2)y'' - xy' + \alpha^2 y = 0$
Hermite	$y'' - 2xy' + \lambda y = 0$
Laguerre	$xy'' + (1-x)y' + \lambda y = 0$
Legendre	$(1 - x^2)y'' - 2xy' + \alpha(\alpha + 1)y = 0$

Equation	Areas of Application	
Airy	Acoustics, Fiber Optics	
Bessel	Acoustics, Electrodynamics	
Chebyshev	Approximation Theory	
Hermite	Quantum Mechanics	
Laguerre	Approximation Theory	
Legendre	Heat Flow, Electrodynamics	
	<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○	مره

For More Material on Power Series Solutions of Differential Equations, Download Chapter 9 of Brennan and Boyce

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00