MATH 226 Differential Equations
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Ways To Study Differential Equations
» Numerical Approximations to Solution
» Linearize Near Equilibrium Points
» Qualitative Analysis
» SOLVE THE EQUATION
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Example

y' =y with y(0) =1

y'(t) = y(t)

y'(t) _
y(t)
Integrate Both Sides With Respect to t

Iny=t+C
Exponentiate
y = Cet
Use Initial Condition: y =1 when t =0
1=C®=Cx1=C

y = e’ is the unique solution
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Power Series Approach
Assume solution can be represented by a power series

o0
y =ag+ aix+ x>+ azxd+ ... = Zanx”
n=0

Then we have an expression for the solution if we can determine
what the constant coeffients ag, a1, a, .. are. Example: Solve

y' = y with initial value y(0) =1
With

Yy =a+ aix + azx2 + 33x3 + .a4x4 + a5x5..

we have

y = a1+ 2axx + 3a3x2 +4a,x3 + Sasx* + ...
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Yy =ap + ai1x + azx2 + a3x3 + .a4x4 + a5x5..

y' =ay + 2a0x + 3a3x? + dagx> + Sasxt + ...

we can equate coefficients
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a a an—1
a1 = ao 32:71 332?2 dp = nn



Since y’ = y and
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/

Yy =a; + 2axx + 3a3x2 + 4a4x3 + 5a5x4 +
we can equate coefficients

ai=ay 2a=a 3a3=a na, = ap—1
a a an—1
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Since y’ = y and

/

y' =ay + 2a0x + 3a3x? + dagx> + Sasxt + ...

we can equate coefficients

ai=ay 2a=a 3a3=a na, = an_1
a a an—1
aa=a a=7% a3=% an = ~"—
a a
n=%=%
a a0 a
a3 = 37327 3l
a3 0 — 40
94 =7 T gx3 — 4l
a2, = an—1 __ ao __ a
n— n 7 nx(n—-1)! 7 nl

So the solution of y' =y is

x2 X3 Xt x"
y = 1+X+7+?+7+ +7+

Yy =ap + ai1x + azx2 + a3x3 + .a4x4 + a5x.5..

dl; = 4o



Solution to y’ = y with y(0) = 1 has the form

x2 X3 Xt x"
y:30(1+x++3|++ +7+ >

Evaluating at x =0 gives 1 = y(0) = ap(L+0+0+0+ ...

so ag =1 and

x2 X3 Xt x"
y—l—l—x—i—f—l-?-i-f—k +7+

) =

a0



Solution to y’ = y with y(0) = 1 has the form

x2 X3 Xt x"
y:ao(1+x++3|++ +7+ >

Evaluating at x =0 gives 1 = y(0) = ap(L+0+0+0+ ...

so ag =1 and

x2 X3 Xt x"
y—l—l-x—l—f—l-?-i-f—k _,_7_|_

But we also know the solution is y = €*. Thus

x2 X3 Xt x"
—1+x+§+§+f+ +7+

)=

a0
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2.666666667
2.708333333
2.716666667
2.718055556
2.718253968
2.718278770
2.718281526
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2.718281826
2.718281828
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Y = a0+ a1x + ax% + . + anx" + anp1x" T+ appox™2 4 .

y' = a1 +2ax+ ...+ na,x" 1 + (n+1apt1x"+ (n+ 2)a,,+2x”+1
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y" = 2a+..+n(n—1)apx"2+n(n+1)ap1x™ +H(n+1)(n+2)anp2x"+..

Coefficient of x" in y + xy’ + y is
an + nap + (n+1)(n+2)an2
=ap(l4+n)+(n+1)(n+2)apt2 = (n+1)[an + (n+ 2)ani2]



Example: A Second Order Differential Equation
y// + xy' +y=0

Y = a0+ a1x + ax% + . + anx" + anp1x" T+ appox™2 4 .

y' = a1 +2ax+ ...+ na,x" 1 + (n+1apt1x"+ (n+ 2)a,,+2x”+1

xy' = aix+2ax?+..4napx"+(n+1)ap 1 x" T H(n42)apox" 24
y" = 2a+..+n(n—1)apx"2+n(n+1)ap1x™ +H(n+1)(n+2)anp2x"+..

Coefficient of x" in y + xy’ + y is
an + nap + (n+1)(n+2)an2
=ap(l4+n)+(n+1)(n+2)apt2 = (n+1)[an + (n+ 2)ani2]

But all coefficients must be 0. Thus



Our Equation: y” + xy’ + y = 0 has solution

2 1 2
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where ap0 = —



Our Equation: y” + xy’ + y = 0 has solution

2 1 2
y =ag+ aix + ax® + ...+ apx" + ap 1 x4+ appax™ 4
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Our Equation: y” + xy’ + y = 0 has solution

y =ag+ aix + apx® + ... + apx" + app1x™ T + apiox"T2 4+
here a an
w = —
2 n+2
Thus
40 a2 ao 3 ao
a =554 - =, = ~N A - — g e
2 27 4 4 24, 6 246
33_3735_—’_3.5737 357,
We can write solution as
1 1 1 (_1)n
= 1 2 4_ 6 e _— 2n .
g ao[ T T ae Tt X
L L (=™ 2n—1
+a1[x—3x —1—3 5x+ +3-5-7‘...~(2n—1)x + ...

where ag = y(0) and a; = y’(0).



Our Equation: y” + xy’ + y = 0 has solution

1 1 1 (~1)"
— a0 |1— 2x? 4 T i M N
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y = aof(x) + a18(x)

e -1 nX2n
f(X):Zz-EL-6)-...-2n

_1)n+1X2n—1

N
g(X)—Z3.5.7-...-(2n—1)




Example: Find Power Series Solution
for y' = 5y + 13 with y(0)
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Example: Find Power Series Solution
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Note first: ag =

2
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Write equation as y’ — 5y = 13

Coefficient of x" in =5y is —ba,



Example: Find Power Series Solution
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Note first: ag = %
Write equation as y’ — 5y = 13
Coefficient of x”7 in =5y is —ba,
Coefficient of x" in y" is (n+ 1)apt1
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Example: Find Power Series Solution
for y' = 5y + 13 with y(0) = %

y =ag+ aix + apx® + azx> + ... + apx" + app x4
Note first: ag = %

Write equation as y’ — 5y = 13
Coefficient of x”7 in =5y is —ba,
Coefficient of x" in y" is (n+ 1)apt1
Constant Term in y’ — By is a; — 5ag which equals 13
Soa; =13+5a=13+5(3) =15=3x5
So (n+1)apy1 —5a,=0forn>1
Thus Recurrence Relation is

5a
api1 = ﬁnl’ forn>1



n ant+1 = 5i1

1 a=1(6a)=1(5x3x5=3x3
2 33:%(532):%(5X3X%2!):3X%3|
3 a=(5a)=3x 7

4 35:%(534)=3x5—?

n—1 ay=1(5a,1)=3x %



5
n dn+1 ninl

1 a=1(5a1)=3(5x3%x5)=3x2

(5><3><3—T):3><g—3!

Wl

2 a3z = (532) =

W=

4

(5a3) =3 x 2

=

3 dq =

4 85:%(534):3X%T

n—1 a,=1(5a,_1)=3x2;

Thus y = ag + a1x + aox> + azx® + asx* + ...apx" + ..
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(5x)° (5x)°

2! 3! n!

(5x)"

2
y:g+3><5x+3><

2 (5x)?  (5x)3 (5x)"

+3X —— 4+ ... +3IxXx — 4 ..



2 3 n
(5x) +3x@+...+3x@+...
21 3! n!

2
y:g+3><5x+3><

2 (5x)?  (5x)3 (5x)"

+ 4+ ..+

2 (5x)?  (5x)3 (5x)"
5+3—3+3X(5X+ ol 30 ol 4+ ...



2 3 n
(5x) +3x@+...+3x@+...
21 3! n!

2
y:g+3><5x+3><
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2 3 n
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2
y:g+3><5x+3><

2 (5x)?  (5x)3 (5x)"

+ 4+ ..+

2 (5x)?  (5x)3 (5x)"
_5+3—3+3X(5X+ ol 30 ol 4+ ...

2 5x)2 5x)3 5x)"
: S L +...+(n!)+...>

=2 _-343x (1—|—5x+—|—

13
soy=-—+ + 3>
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Example: Solve y’ = 5y + 13 with y(0) = 2
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y' — 5y = 13. Integrating Factor is e >

(ye—5X)/ — 13e—5x

-1
ye_sx = 13?6_5)( + C

13
y = —g + CeSX



Example: Solve y’ = 5y + 13 with y(0) = 2
as First Order Linear Differential Equation.

y' — 5y = 13. Integrating Factor is e >

(ye—5X)/ — 13e—5x

-1
ye_sx = 13?6_5)( + C

13
y = —g + CeSX

2
Using y(0) = g yields C =3



Frequently Encountered Second Order Differential Equations
in Applications

P(x)y” + Q(x)y' + R(x)y =0

Airy y"—xy =0
Bessel X2y" 4+ xy' + (x®2 —1v?)y =0
Chebyshev (1-x2)y" —xy'+a?y =0
Hermite y'=2xy' + Ay =0
Laguerre xy" +(1L=x)y'+ Ay =0

Legendre (1 —x?)y” —2xy' + a(a+1)y =0

Equation Areas of Application
Airy Acoustics, Fiber Optics
Bessel Acoustics, Electrodynamics

Chebyshev Approximation Theory

Hermite Quantum Mechanics

Laguerre Approximation Theory

Legendre  Heat Flow, Electrodynamics



For More Material on
Power Series Solutions
of Differential Equations,
Download Chapter 9
of Brennan and Boyce



