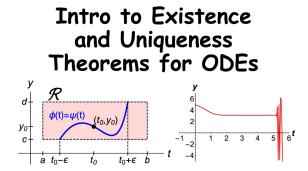
MATH 226 Differential Equations



Class 35: Friday May 9, 2025

Self Evaluation Peer Evaluation MATH 226 Sticker

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Announcements

Project 3 Due Today

Course Response Forms In Class Next Monday Bring Laptop/SmartPhone

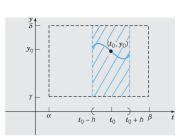
Final Exam Friday, May 16: 9 - Noon A - J: Warner 010 K - Z: Warner 100

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Basic Existence-Uniqueness Theorem For Differential Equations

Theorem 2.4.2 in Brannan and Boyce

Let the functions f and $\partial f / \partial y$ be continuous in some rectangle $\alpha < t < \beta, \gamma < y < \delta$ containing the point (t_0, y_0) . Then, in some interval $t_0 - h < t_0 < t_0 + h$ contained in (α, β) there is a unique solution of the initial value problem



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$y'(t) = f(t, y), \ y(t_0) = y_0$$

Example 1: Need For Continuity of f(t, y)

$$y'(t)=\frac{1}{t}, y(0)=0$$

If we try to solve:

$$\int y'(t) dt = \int \frac{1}{t} dt$$
$$y(t) = \ln |t| + C$$

Theorem: If f(t, y) is continuous in a neighborhood of (a, b), there **exists** a solution of y' = f(t, y), y(a) = b.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Example 2: Continuity of Partial with Respect to y of f(t, y)

$$y' = y^{1/3}, \ y(0) = 0$$

One Solution: y(t) = 0 for all t Solve By Separation of Variables: $y^{-1/3} y = 1$ yields

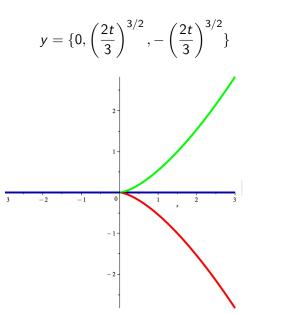
$$\frac{3}{2}y^{2/3} = t + C$$

Initial Condition gives C = 0

$$y = \pm \left(\frac{2t}{3}\right)^{3/2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Three Solutions of
$$y' = y^{1/3}$$
, $y(0) = 0$



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Solving
$$y'(t) = f(t, y)$$
 with $y(0) = 0$ yields
 $y(t) = \int_0^t f(s, y) ds$

We use Picard's Iteration Method to get at the integral.

$$\phi_0(t) = 0, \phi_{n+1}(t) = \int_0^t f(s, \phi_n(s))) ds$$

Charles Émile Picard

July 24, 1856 – December 11, 1941 Biography

Solving y'(t) = f(t, y) with y(0) = 0 yields $y(t) = \int_0^t f(s, y) ds$

Picard's Iteration Method

$$\phi_0(t) = 0, \phi_{n+1}(t) = \int_0^t f(s, \phi_n(s)) \, ds$$

$$\phi_0(t) = 0, \phi_{n+1}(t) = \int_0^t f(s, \phi_n(s))) \, ds$$

- Step 1: $\phi_n(t)$ exists for all *n* and is continuous.
- Step 2: $\phi(t) = \lim_{n \to \infty} \phi_n(t)$ exists for all t and is continuous.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Step 3: \u03c6(t) satisfies the diiferential equation and initial condition.
- Step 4: ϕ is the unique solution.

Example of Picard Iteration
$$y' = 2(y + 1), y(0) = 0$$

 $\phi_0(t) = 0$

 $\phi_1(t) = \int_{s=0}^{s=t} f(s, \phi_0(s)) ds = \int_{s=0}^{s=t} 2(\phi_0(s)+1) ds = \int_{s=0}^{s=t} 2ds = 2t$ $\phi_2(t) = \int_0^t f(s, \phi_1(s)) ds = \int_0^t 2(\phi_1(s)+1) ds = \int_0^t 2(2t+1) ds = \int_0^t (4t+2) ds = 2t^2 + 2t$

$$\phi_3(t) = \int_0^t f(s, \phi_2(s)) \, ds = \int_0^t 2(\phi_2(s) + 1) \, ds = \int_0^t 2(2t^2 + 2t + 1) \, ds = \int_0^t (4t^2 + 4t + 2) \, ds = \frac{4}{3}t^3 + 2t^2 + 2t$$

 $\phi_4(t) = \int_0^t f(s, \phi_3(s)) \, ds = \int_0^t 2(\phi_3(s) + 1) \, ds = \int_0^t 2(\frac{4}{3}t^3 + 2t^2 + 2t + 1) \, ds = \int_0^t (\frac{8}{3}t^3 + 4t^2 + 4t + 2) \, ds = \frac{2}{3}t^4 + \frac{4}{3}t^3 + 2t^2 + 2t$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @