Math 302: Abstract Algebra Sample Exam 1 Solutions

1. To show that $[b] \subseteq [c]$, we must show that for every $x \in [b]$, it is true that $x \in [c]$. Thus, we must show that if $b \sim x$, then $c \sim x$.

But since $a \in [c]$, we know that $c \sim a$.

Furthermore, since $a \in [b]$, we know that $b \sim a$. Since \sim is symmetric, this also means that $a \sim b$.

Again, since $x \in [b]$, we know that $b \sim x$.

Putting all this facts together gives

$$c \sim a \sim b \sim x.$$

By the transitivity of \sim , we conclude that $c \sim x$, as desired.

2. Suppose that $a = nq_a + r_a$ and $b = nq_b + r_b$, where $0 \le r_a, r_b < n$. Note that by definition of the modulus function, $r_a = a \mod n$ and $r_b = b \mod n$.

Without loss of generality, assume that $r_a \ge r_b$. Notice that $0 \le r_a - r_b < n$. We then have

$$a - b = (nq_a + r_a) - (nq_b - r_b)$$

= $n(q_a - q_b) + (r_a - r_b).$

Since n divides a - b, and since $0 \le r_a - r_b < n$, we conclude that it must be the case that $r_a - r_b = 0$, i.e. $r_a = r_b$, i.e. $a \mod n = b \mod n$.

3. Although the identity of G lies in H and H is closed under the binary operation of G (why?), H is not a subgroup of G.

For example, suppose that $A \in GL(2, \mathbb{R})$ is such that det A = 2.

We know that since det $A \neq 0$, the inverse A^{-1} is an element of $GL(2, \mathbb{R})$.

We also know, however, that det $A^{-1} = \frac{1}{\det A} = \frac{1}{2}$. Since $\frac{1}{2}$ is not an integer, A^{-1} is not in H, so H is not closed under inverses.

Thus H is not a subgroup of G.

- 4. (a) An element a in a group G has infinite order if there is no integer n such that $a^n = e$.
 - (b) Suppose that a ∈ G has order n. Let x be any other element in G. Then by one of our homework problems, for any integer m, (xax⁻¹)^m = xa^mx⁻¹. But if |a| = n, then aⁿ = e so

$$(xax^{-1})^n = xa^n x^{-1} = xex^{-1} = xx^{-1} = e$$

Thus, since $(xax^{-1})^n = e$, by one of our theorems, the order of xax^{-1} divides n.

5. Let g be any element in G.

For the base case n = 2, we have $\varphi(g^2) = \varphi(gg) = \varphi(g)\varphi(g)$ by the given property of φ . So the base case holds.

Now, suppose that the property holds for n = k, i.e. that $\varphi(g^k) = (\varphi(g))^k$. For the induction step, consider $\varphi(g^{k+1})$. Since $g^{k+1} = gg^k$, we have

$$\begin{split} \varphi(g^{k+1}) &= \varphi(gg^k) \\ &= \varphi(g)\varphi(g^k) & \text{(by the given property of } \varphi) \\ &= \varphi(g)(\varphi(g))^k & \text{(by the induction hypothesis)} \\ &= (\varphi(g))^{k+1} & \text{(by properties of exponents).} \end{split}$$

Thus, we have proven the induction step that $\varphi(g^{k+1}) = (\varphi(g))^{k+1}$ so by induction, $\varphi(g^n) = (\varphi(g))^n$ for all integers $n \ge 2$.

- 6. (a) By the FTCG, G has exactly one subgroup for each divisor of 12. The divisors of 12 are 1, 2, 3, 4, 6, 12, so G has 6 subgroups.
 - (b) There is one subgroup of order 4 in G, namely \langle a^3 \rangle = \{e, a^3, a^6, a^9\}. Since there is only one subgroup of order 4 in G, the generators of this subgroup represent all the elements of order 4 in G. An element \langle a^3 \rangle generates this subgroup if and only if gcd(4, k) = 1, so the generators (i.e. the elements of order 4 in G) are a^3 and a^9.