
Math 302: Abstract Algebra
Sample Exam 1 Solutions

1. To show that [b] ⊆ [c], we must show that for every x ∈ [b], it is true that x ∈ [c]. Thus,
we must show that if b ∼ x, then c ∼ x.

But since a ∈ [c], we know that c ∼ a.

Furthermore, since a ∈ [b], we know that b ∼ a. Since ∼ is symmetric, this also means
that a ∼ b.

Again, since x ∈ [b], we know that b ∼ x.

Putting all this facts together gives

c ∼ a ∼ b ∼ x.

By the transitivity of ∼, we conclude that c ∼ x, as desired.

2. Suppose that a = nqa+ra and b = nqb+rb, where 0 ≤ ra, rb < n. Note that by definition
of the modulus function, ra = amodn and rb = bmodn.

Without loss of generality, assume that ra ≥ rb. Notice that 0 ≤ ra − rb < n.

We then have

a− b = (nqa + ra)− (nqb − rb)

= n(qa − qb) + (ra − rb).

Since n divides a − b, and since 0 ≤ ra − rb < n, we conclude that it must be the case
that ra − rb = 0, i.e. ra = rb, i.e. amodn = bmodn.

3. Although the identity of G lies in H and H is closed under the binary operation of G
(why?), H is not a subgroup of G.

For example, suppose that A ∈ GL(2,R) is such that detA = 2.

We know that since detA ̸= 0, the inverse A−1 is an element of GL(2,R).
We also know, however, that detA−1 = 1

detA = 1
2 . Since 1

2 is not an integer, A−1 is not
in H, so H is not closed under inverses.

Thus H is not a subgroup of G.



4. (a) An element a in a group G has infinite order if there is no integer n such that an = e.

(b) Suppose that a ∈ G has order n. Let x be any other element in G.

Then by one of our homework problems, for any integer m, (xax−1)m = xamx−1.

But if |a| = n, then an = e so

(xax−1)n = xanx−1 = xex−1 = xx−1 = e.

Thus, since (xax−1)n = e, by one of our theorems, the order of xax−1 divides n.

5. Let g be any element in G.

For the base case n = 2, we have φ(g2) = φ(gg) = φ(g)φ(g) by the given property of φ.
So the base case holds.

Now, suppose that the property holds for n = k, i.e. that φ(gk) = (φ(g))k.

For the induction step, consider φ(gk+1). Since gk+1 = ggk, we have

φ(gk+1) = φ(ggk)

= φ(g)φ(gk) (by the given property of φ)

= φ(g)(φ(g))k (by the induction hypothesis)

= (φ(g))k+1 (by properties of exponents).

Thus, we have proven the induction step that φ(gk+1) = (φ(g))k+1 so by induction,
φ(gn) = (φ(g))n for all integers n ≥ 2.

6. (a) By the FTCG, G has exactly one subgroup for each divisor of 12. The divisors of
12 are 1, 2, 3, 4, 6, 12, so G has 6 subgroups.

(b) There is one subgroup of order 4 in G, namely ⟨a3⟩ = {e, a3, a6, a9}.
Since there is only one subgroup of order 4 in G, the generators of this subgroup
represent all the elements of order 4 in G. An element (a3)k generates this subgroup
if and only if gcd(4, k) = 1, so the generators (i.e. the elements of order 4 in G) are
a3 and a9.
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