
Math 302: Abstract Algebra
Sample Exam 2 Solutions

1. (Note: we are assuming here that Lg is a permutation of the elements of G, so we don’t
have to prove this part.)

To show that G and G are isomorphic, define a map φ : G → Ḡ by

φ(g) = Lg.

We must check that φ is 1-1, onto, and operation-preserving.

To see that φ is 1-1, suppose that φ(g) = φ(h), i.e. Lg = Lh as functions. We must show
that g = h. To say that Lg = Lh as functions means that Lg(x) = Lh(x) for all x ∈ G.
In particular, Lg(e) = Lh(e), so ge = he, so g = h. Thus φ is 1-1.

Since Ḡ is defined to be the set {Lg | g ∈ G}, we have directly that φ is onto. Indeed, for
any Lg ∈ Ḡ, Lg = φ(g).

Finally, we show that φ(g)φ(h) = φ(gh). To do this, we must show that as functions,
LgLh = Lgh. For any x ∈ G

LgLh(x) = Lg(hx) = g(hx) = (gh)x = Lgh(x).

Since x was arbitrary, we conclude that as functions LgLh = Lgh.

Therefore, φ : G → G is an isomorphism, so G is isomorphic to G.

2. Let n ≥ 3 and suppose that α is any nonidentity element in Sn.

Since α is not the identity, we know that α must not fix at least one element a in
{1, 2, . . . , n}. Thus, if we express α in disjoint cycle notation, it will contain a cycle of
the form (ab · · · ). (Note that α isn’t necessarily comprised of a single cycle. It’s just that
it must contain a cycle of this form.)

We would to show that our generic nonidentity element α is not contained in the center
Z(Sn). We can do this if we can produce an element β ∈ Sn for which αβ ̸= βα.

Since n ≥ 3, we have a third element c ∈ {1, 2, . . . , n} which is not equal to either a or
b. Consider β = (ac).

Then we have
βα(a) = β(b) = b

since β fixes b.



On the other hand we have
αβ(a) = α(c) = x

for some x ∈ {1, 2, . . . , n}. Importantly, x ̸= b. This is because α is a permutation, so it
is 1-1. If α(c) = b then this would say α(c) = α(a), and since α is 1-1, we would have
c = a, a contradition.

Therefore we have shown that βα(a) ̸= αβ(a), so as functions βα ̸= αβ. Since we have
an element β that does not commute with α, α cannot be in Z(Sn). Since α ∈ Sn was
an arbitrary nonidentity element, we conclude that Z(Sn) = {ε}.

3. The order of any element g in G must divide the order of G. Since |G| = 25, the only
possible orders for g are 1, 5, or 25. Note that the only element that can have order 1 is
the identity.

If there is an element g such that |g| = 25, then ⟨g⟩ = G and G is cyclic.

If there is not an element g such that |g| = 25, then all nonidentity elements must have
order 5. In this case for all nonidentity elements, g5 = e. But it’s also the case that
e5 = e, so we have shown that in the case that G is not cyclic, g5 = e for all g ∈ G.

4. Suppose that H is normal in G and ab ∈ H. We must show that ba ∈ H.

Using the litmus test, if ab ∈ H, this means that a−1H = bH.

But H is normal so we have that a−1H = Ha−1 and bH = Hb. Thus Ha−1 = Hb.

But using the litmus test (on the right), we conclude that H = Hba, i.e. ba ∈ H, as
desired.

5. For contradiction, suppose that there is an isomorphism φ : R → R∗.

Since φ is an onto map, there must be some k such that φ(k) = −1.

Note that k ̸= 0 because an isomorphism will always map the identity to the identity,
but while 0 is the identity in R, −1 is not the identity in R∗.

Since k ̸= 0, it is also the case that k2 ̸= 0. But then we have

φ(k2) = (φ(k))2 = (−1)2 = 1.

This is impossible because φ is 1-1 and we know that φ(0) = 1 but 0 ̸= k2. Thus, we
have a contradiction, so R cannot be isomorphic to R∗.
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6. Yes. Since gcd(3, 5) = 1, Z3 ⊕ Z5 is cyclic of order 15. Thus is it is isomorphic to Z15.

To determine how many isomorphism there are, we first note that for any cyclic group
G = ⟨a⟩, and for any operation-preserving map, once we know the value of φ(a), we know
the value of φ(g) for any g ∈ G. This follows from the fact that g = ak for some k so

φ(g) = φ(ak) = (φ(a))k.

Furthermore, any isomorphism must map a generator to a generator.

So, in order to count the number of isomorphism φ : Z3 ⊕ Z5 → Z15, if we let (1, 1) be
a generator of Z3 ⊕ Z5, we simply need to count the number of generators in Z15 that
(1, 1) could map to.

But we know that i ∈ {0, 1, . . . , 14} generates Z15 if and only if gcd(i, 15) = 1. So
i = 1, 2, 4, 7, 8, 11, 13, 14, and there are 8 possible isomorphisms.
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