Math 302: Abstract Algebra Proof that U(n) is a group.

Let $U(n) = \{m \in \mathbb{Z} \mid 1 \le m < n \text{ and } gcd(m, n) = 1\}$. Define $a \cdot b = ab \mod n$.

Claim: U(n) is a group. .

Closure: We must check that if $a, b \in U(n)$, then $ab \mod n \in U(n)$, i.e. that $1 \le ab \mod n < n$ and $gcd(ab \mod n, n) = 1$.

Suppose that ab = np + r for some p and $0 \le r < n$. Then $ab \mod n = r$.

From a homework problems we know that gcd(a, n) = 1 and gcd(b, n) = 1 implies that gcd(ab, n) = 1. This implies that there are integers s, t such that abs + nt = 1. By substitution, we can write (np + r)s + nt = 1, which we rearrange to give r(s) + n(ps + t) = 1. Since we have written 1 as a linear combination of r and nand since 1 is the smallest integer, we conclude that $gcd(ab \mod n, n) = 1$. Second, from the definition of modular multiplication, we know that $0 \le ab \mod n < n$. However, since $gcd(ab \mod n, n) = 1$, it must be the case that $1 \le ab \mod n < n$. Therefore $ab \mod n \in U(n)$.

Associativity : Since multiplication is associative, so is modular multiplication.

- **Identity:** It's always the case that gcd(1, n) = 1, so $1 \in U(n)$ for all n. Since the product of 1 and x is x for all x, 1 is the identity in U(n).
- **Inverses:** We must check that for every element $b \in U(n)$, there is some other element $b^{-1} \in U(n)$ such that $bb^{-1} \mod n = 1$.

Recall from another homework problem that in general, for any integer a, $ax \mod n = 1$ has a solution if and only if gcd(a, n) = 1.

Let b be an element in U(n). Then by the definition of U(n), we know that gcd(b, n) = 1. Thus by that homework problem, we know that there is some number s such that $bs \mod n = 1$. It may or may not be the case that $1 \le s < n$. If it is not, we can write s = nq + r for some integer q and some $0 \le r < n$. In that case $br \mod n = b(s - nq) \mod n = bs \mod n = 1$. Since $b \ne 0$ and since $br \mod n = 1$ we can conclude that $r \ne 0$ (i.e. $1 \le r < n$). Furthermore, using the homework problem again, we see that since $rx \mod n = 1$ has a solution (namely x = b), it must be the case that gcd(r, n) = 1. Thus we have shown that $r \in U(n)$. Since $br \mod n = 1$, we have that $b^{-1} = r$.