Notes about divisibility:
* if dla and dlb, then
$$d[a+b]$$
.
* there exists
(why? Since dla, $\exists k \in \mathbb{Z}$ s.t. $a : dk$.
Since dlb, $\exists k \in \mathbb{Z}$ s.t. $a : dk$.
But then, $a+b : dk + dk = d(k+l)$.
* However, $d[a+b] \neq d[a]$ and $d[b$.
tourtinexample: $2|b]$ but $2|1|$ and $2|5|$
But, if $d[a+b]$ and $d[a]$, then $d[b$.
But, if $d[a+b]$ and $d[a]$, then $d[b$.
Then by defin of $d(a+b) = a$
 $apply$ *.

Fundamental Theorem of Anithmetic

Every integer greater than 1 is a prime or a unique

product of primes. The only difference blue two

factorizations is the order in which primes appear.