The First Isomorphism Theorem

Then (First (somerphism Theorem)
Sp:
$$\varphi: G_1 \rightarrow G_2$$
 is a homomorphism.
Let $\varphi(G_1) = \{\varphi(g)\} g \in G_1 \{ \{ \{ \{ (G_1 \} = \{ ((G_1 \} =$

C.
$$l_{2}$$
 recall previous example/prot...
EX Z/8 Z ~ Ze Some as proof of 14 time turn.
EX Z/8 Z ~ Ze Some as proof of 14 time turn.
Example Define $\varphi: Z \rightarrow Z_8$ by $\varphi(a) = a \mod 8$
Note: domain is Z, not Z/8Z
Then φ is a holmomorphicm:
 $\varphi(a+b) = \varphi(b) \mod 8$
this holds by $= [a \mod 8 + b \mod 8] \mod 88 = \varphi(a) + \varphi(b)$
earlier result group operation in Zs.
Further, ker $\varphi = 8Z$
Firstly, φ is oute
Thus, by first isomerphism theorem, $Z[8Z \approx R_3$
 $Il = \frac{1}{G/kerp}$
Bib IDEA: Can prove the theorem once, in fall generality,
then apply it in many different situations.