

$$\underline{\mathbf{f}}_{\mathbf{X}} \quad \mathbf{Z}_{n} = \mathbf{i}_{0, 1, 2, \dots, n-1} \mathbf{j}$$
abelian group under addition mod n
closed under multiplication mod n
$$\frac{\mathbf{f}_{\mathbf{X}} \quad \mathbf{f}_{\mathbf{x}} \quad \mathbf{f}_{\mathbf{x}}$$

4.
$$M_2(Z) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in Z. \right\}$$

Addition: $\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a + e & b = f \\ c + g & d + h \end{bmatrix}$
Multiplication: $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & * \\ * & & \\ \end{bmatrix}$
Multiplication mult.
Gince Z is closed under addition and
multiplication, $M_2(Z)$ is closed
under metrix multiplication.
Commutative? No.
Note: 1 is smult: 1000001 in Z
Unity? Yes: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
In fact,
5. If R is any ring, So is $M_2(R)$. as above
 L IF R has unity, So does $M_2(R)$.