7. IR = real numbers

$$(i = \sqrt{-1})$$

 $adjoin i$
8. C = IR[i] = {a + bi | a, b \in IR, i² = -1 }

9.
$$\mathbb{Z}[i] = \{a+bi \mid a, b \in \mathbb{Z}, i^2 = -i\}$$

same multiplication as C.
(commutative, with unity.
10. Sps R is a ring. The polynomial ring over R is
 $\mathbb{R}[x] = \{a_0 + a_1x + \dots + a_nx^n \mid a_i \in \mathbb{R}\}$
e.g. $1 + 2x - 9x^3 \in \mathbb{Z}[x]$.
Ring operations: polynomial addition and multiplication.
e.g. $(1 + 2x) + (3x + 7x^2) = 1 + 5x + 7x^2$
 $(1 + 2x)(3x + 7x^2) = 3x + 7x^2 + 6x^2 + 14x^3$
 $= 3x + 13x^2 + 14x^3$
Note: dements in RED are just formal polynomials. Generally, we toline
of x as a placeholder that helps us define addition and
multiplication, rather than as a variable to plug into.

11. If R, and Rz are rings, can form the direct product R, OR_z. $\binom{1}{2} \binom{1}{r_1, r_2} r_1 \in R_1, r_2 \in R_2$ componentwice operations.