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If R is a ring with unity , C- 1) a
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additive inverse ofa .

( follows from property 2)
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1 . If R has unity , it is unique .

↳
same proof as for groups .

8 . If R has unity and AER has a multiplicative inverse a-
'

,

then a
"
is the unique inverse of a .

↳
same proof as for groups .

Notation : Recall additive notation in groups :
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n times

can be ambiguous how , so write

At at - - -tap
n times
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