Defn The <u>characteristic</u> of a ring R, denoted char R, is the smallest positive integer n such that $n \cdot x = 0$ for all $x \in R$. If no such integer exists, we say char R = 0Recall: $n \cdot x = x + x + \dots + x$ n times

Note: Sps IRI finite.

char R will be the lam of the additive orders

of the elements of R.

Since the order of each element divides (RI,

it follows that char R divides [R].

Ex char
$$Z_n = n$$
.
S will be $\leq n$. But $|I| = n$, so char RZn
Ex char $C = 0$
Ex char $M_2(Z_q) = 4$
 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $a_1b_1c_1d \in Z_q$
Ex Sps R is a commutative and char R=2.
Then $(a+b)^2 = a^2 + b^2$.
Indeed,
 $(a+b)^2 = (a-)(a+b)$ char R=0
 $= a^2 + ba + ab + b^2 = a^2 + 2ab + b^2$
 $= a^2 + b^2$.