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Thin It R is an integral domain ,
char R is or

proof : Recall that by deth of integral domain , R has unity .

Sps. Char R not 0 . ( NTS : char R is prime .)
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By our previous theorem , n is the additive order

of 1 ,
so is the smallest n such that n . 1=0
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Since R is an integral , this says
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a contradiction .

Thus char R is prime .
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