Thm (Ideal Test) A nonempty subset ISR is an ideal if · a - b E I for all a, b E I and ·ra EI and ar EI for all aEI and rER proof: This is the subring test, with the additional requirement that ar + I and ra + I for all a E I and all rER. \underline{FX} Let $a \in \mathbb{R}$, where \mathbb{R} is commutative. The (principal) ideal generated by a is the set <a>= { ra rers (WARNING: careful with notation. Not same as additive

subgroup generated by a)

To see that (a) is an ideal:

Sps
$$r_1 \alpha_1, r_2 \alpha \in \langle \alpha \rangle$$
.
Compensation of $\langle \alpha \rangle$.

Then
$$r_1 \alpha - r_2 \alpha = (r_1 - r_2) \alpha \in \langle \alpha \rangle$$
.

Then
$$r(r, a) = (rr,)a \in \langle a \rangle$$
.

Also, since R is commutative,

$$(r_i a)r = r(r_i a) = (r_i)a \in \langle a \rangle$$